An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper

An ultra-thin (20 μm), flexible CMOS stress sensor for hybrid systems-in-foil (HySiF) is presented. The system is designed for Fin Ray® grippers in order to measure the emerging stress on the gripper in operation, enabling the extraction of object shape and operation status. In-plane stress is linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2016-01, Vol.51 (1), p.273-280
Hauptverfasser: Mahsereci, Yigit, Saller, Stefan, Richter, Harald, Burghartz, Joachim N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 1
container_start_page 273
container_title IEEE journal of solid-state circuits
container_volume 51
creator Mahsereci, Yigit
Saller, Stefan
Richter, Harald
Burghartz, Joachim N.
description An ultra-thin (20 μm), flexible CMOS stress sensor for hybrid systems-in-foil (HySiF) is presented. The system is designed for Fin Ray® grippers in order to measure the emerging stress on the gripper in operation, enabling the extraction of object shape and operation status. In-plane stress is linearly converted to electrical signals proportional to shear stress and normal stress difference using two sensing elements. Each stress signal is processed and digitized by an integrator and a 10-bit SAR ADC. In contrast to rigid chips, the stress cannot be avoided in the sensitive blocks, such as the signal processing chain and digital controller, when an ultra-thin chip is under deformation. The influence of stress levels, up to 350 MPa, is minimized by using stress-insensitive components, design measures, and layout techniques. This work represents the first demonstration of stress-aware top-to-bottom CMOS design on an ultra-thin chip.
doi_str_mv 10.1109/JSSC.2015.2498183
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7342887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7342887</ieee_id><sourcerecordid>1786216461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e4e6c2bc442f5003a0593d116e996a81017d14f65d8bf091ae4916bacee6196e3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKc_QLzk6KUzX5qmyXFUN5XJwG7gLaTtV6x0TU060X9vx8TTywvP-x4eQq6BzQCYvnvO82zGGSQzLrQCFZ-QCSSJiiCN307JhDFQkeaMnZOLED7GKoSCCdnOO7ptB2-jzXvT0UWL303RIs1e1jnNB48h0By74Dy9x53rwogOWFHXUdvReWX7oflC-uoKNzQlXfqm79FfkrPatgGv_nJKtouHTfYYrdbLp2y-ikqu1RChQFnyohSC1wljsWWJjisAiVpLq4BBWoGoZVKpomYaLAoNsrAlogQtMZ6S2-Nv793nHsNgdk0osW1th24fDKRKcpBCwojCES29C8FjbXrf7Kz_McDMQaE5KDQHheZP4bi5OW4aRPzn01hwpdL4F8DpbEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786216461</pqid></control><display><type>article</type><title>An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper</title><source>IEEE Electronic Library (IEL)</source><creator>Mahsereci, Yigit ; Saller, Stefan ; Richter, Harald ; Burghartz, Joachim N.</creator><creatorcontrib>Mahsereci, Yigit ; Saller, Stefan ; Richter, Harald ; Burghartz, Joachim N.</creatorcontrib><description>An ultra-thin (20 μm), flexible CMOS stress sensor for hybrid systems-in-foil (HySiF) is presented. The system is designed for Fin Ray® grippers in order to measure the emerging stress on the gripper in operation, enabling the extraction of object shape and operation status. In-plane stress is linearly converted to electrical signals proportional to shear stress and normal stress difference using two sensing elements. Each stress signal is processed and digitized by an integrator and a 10-bit SAR ADC. In contrast to rigid chips, the stress cannot be avoided in the sensitive blocks, such as the signal processing chain and digital controller, when an ultra-thin chip is under deformation. The influence of stress levels, up to 350 MPa, is minimized by using stress-insensitive components, design measures, and layout techniques. This work represents the first demonstration of stress-aware top-to-bottom CMOS design on an ultra-thin chip.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2015.2498183</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive ; bendable ; Chips ; CMOS ; CMOS integrated circuits ; Design engineering ; Digitization ; flexible ; Grippers ; hybrid systems-in-foil (HySiF) ; MOSFET ; piezoresistive ; Robot sensing systems ; robotic ; sensor ; Sensors ; Signal processing ; Stress ; Stresses ; Temperature sensors ; ultra-thin</subject><ispartof>IEEE journal of solid-state circuits, 2016-01, Vol.51 (1), p.273-280</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-e4e6c2bc442f5003a0593d116e996a81017d14f65d8bf091ae4916bacee6196e3</citedby><cites>FETCH-LOGICAL-c298t-e4e6c2bc442f5003a0593d116e996a81017d14f65d8bf091ae4916bacee6196e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7342887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7342887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahsereci, Yigit</creatorcontrib><creatorcontrib>Saller, Stefan</creatorcontrib><creatorcontrib>Richter, Harald</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><title>An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>An ultra-thin (20 μm), flexible CMOS stress sensor for hybrid systems-in-foil (HySiF) is presented. The system is designed for Fin Ray® grippers in order to measure the emerging stress on the gripper in operation, enabling the extraction of object shape and operation status. In-plane stress is linearly converted to electrical signals proportional to shear stress and normal stress difference using two sensing elements. Each stress signal is processed and digitized by an integrator and a 10-bit SAR ADC. In contrast to rigid chips, the stress cannot be avoided in the sensitive blocks, such as the signal processing chain and digital controller, when an ultra-thin chip is under deformation. The influence of stress levels, up to 350 MPa, is minimized by using stress-insensitive components, design measures, and layout techniques. This work represents the first demonstration of stress-aware top-to-bottom CMOS design on an ultra-thin chip.</description><subject>Adaptive</subject><subject>bendable</subject><subject>Chips</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Design engineering</subject><subject>Digitization</subject><subject>flexible</subject><subject>Grippers</subject><subject>hybrid systems-in-foil (HySiF)</subject><subject>MOSFET</subject><subject>piezoresistive</subject><subject>Robot sensing systems</subject><subject>robotic</subject><subject>sensor</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Stress</subject><subject>Stresses</subject><subject>Temperature sensors</subject><subject>ultra-thin</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKc_QLzk6KUzX5qmyXFUN5XJwG7gLaTtV6x0TU060X9vx8TTywvP-x4eQq6BzQCYvnvO82zGGSQzLrQCFZ-QCSSJiiCN307JhDFQkeaMnZOLED7GKoSCCdnOO7ptB2-jzXvT0UWL303RIs1e1jnNB48h0By74Dy9x53rwogOWFHXUdvReWX7oflC-uoKNzQlXfqm79FfkrPatgGv_nJKtouHTfYYrdbLp2y-ikqu1RChQFnyohSC1wljsWWJjisAiVpLq4BBWoGoZVKpomYaLAoNsrAlogQtMZ6S2-Nv793nHsNgdk0osW1th24fDKRKcpBCwojCES29C8FjbXrf7Kz_McDMQaE5KDQHheZP4bi5OW4aRPzn01hwpdL4F8DpbEA</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Mahsereci, Yigit</creator><creator>Saller, Stefan</creator><creator>Richter, Harald</creator><creator>Burghartz, Joachim N.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper</title><author>Mahsereci, Yigit ; Saller, Stefan ; Richter, Harald ; Burghartz, Joachim N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e4e6c2bc442f5003a0593d116e996a81017d14f65d8bf091ae4916bacee6196e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive</topic><topic>bendable</topic><topic>Chips</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Design engineering</topic><topic>Digitization</topic><topic>flexible</topic><topic>Grippers</topic><topic>hybrid systems-in-foil (HySiF)</topic><topic>MOSFET</topic><topic>piezoresistive</topic><topic>Robot sensing systems</topic><topic>robotic</topic><topic>sensor</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Stress</topic><topic>Stresses</topic><topic>Temperature sensors</topic><topic>ultra-thin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahsereci, Yigit</creatorcontrib><creatorcontrib>Saller, Stefan</creatorcontrib><creatorcontrib>Richter, Harald</creatorcontrib><creatorcontrib>Burghartz, Joachim N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahsereci, Yigit</au><au>Saller, Stefan</au><au>Richter, Harald</au><au>Burghartz, Joachim N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2016-01</date><risdate>2016</risdate><volume>51</volume><issue>1</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>An ultra-thin (20 μm), flexible CMOS stress sensor for hybrid systems-in-foil (HySiF) is presented. The system is designed for Fin Ray® grippers in order to measure the emerging stress on the gripper in operation, enabling the extraction of object shape and operation status. In-plane stress is linearly converted to electrical signals proportional to shear stress and normal stress difference using two sensing elements. Each stress signal is processed and digitized by an integrator and a 10-bit SAR ADC. In contrast to rigid chips, the stress cannot be avoided in the sensitive blocks, such as the signal processing chain and digital controller, when an ultra-thin chip is under deformation. The influence of stress levels, up to 350 MPa, is minimized by using stress-insensitive components, design measures, and layout techniques. This work represents the first demonstration of stress-aware top-to-bottom CMOS design on an ultra-thin chip.</abstract><pub>IEEE</pub><doi>10.1109/JSSC.2015.2498183</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2016-01, Vol.51 (1), p.273-280
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_7342887
source IEEE Electronic Library (IEL)
subjects Adaptive
bendable
Chips
CMOS
CMOS integrated circuits
Design engineering
Digitization
flexible
Grippers
hybrid systems-in-foil (HySiF)
MOSFET
piezoresistive
Robot sensing systems
robotic
sensor
Sensors
Signal processing
Stress
Stresses
Temperature sensors
ultra-thin
title An Ultra-Thin Flexible CMOS Stress Sensor Demonstrated on an Adaptive Robotic Gripper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultra-Thin%20Flexible%20CMOS%20Stress%20Sensor%20Demonstrated%20on%20an%20Adaptive%20Robotic%20Gripper&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Mahsereci,%20Yigit&rft.date=2016-01&rft.volume=51&rft.issue=1&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2015.2498183&rft_dat=%3Cproquest_RIE%3E1786216461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786216461&rft_id=info:pmid/&rft_ieee_id=7342887&rfr_iscdi=true