Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance

A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373
Hauptverfasser: Ben-Gharbia, Khaled M., Maciejewski, Anthony A., Roberts, Rodney G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1373
container_issue 10
container_start_page 1364
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 46
creator Ben-Gharbia, Khaled M.
Maciejewski, Anthony A.
Roberts, Rodney G.
description A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.
doi_str_mv 10.1109/TSMC.2015.2497439
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7339708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339708</ieee_id><sourcerecordid>4223643621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOOZ-gHgT8LozX22SS5nfbgzcvPCqZOmpZnRNTdKJ_no7Nnb1HjjPew48SXJJ8JgQrG6Wi9lkTDHJxpQrwZk6SQaU5DKllNHT40zy82QUwhpjTKjMGc4HycerbWCjozXoDoL9bJCr0Ew3tu1qHZ0P6MfGL7SALTToDbau7iKgF2ebGNC8jXZj_6BElfPoQXd1REtXg9eNgYvkrNJ1gNEhh8n7w_1y8pRO54_Pk9tpaqhiMRW6lNyUnAvFaU6rPnKTGY2zimNhVpVeGZobTUH3GygZSEKUKDO9YorIkg2T6_3d1rvvDkIs1q7zTf-yIJJhlUnMRU-RPWW8C8FDVbTebrT_LQgudhKLncRiJ7E4SOw7V_uOBYAjLxhTAkv2D9mlbfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830958047</pqid></control><display><type>article</type><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><source>IEEE Electronic Library (IEL)</source><creator>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</creator><creatorcontrib>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</creatorcontrib><description>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2015.2497439</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Fault tolerance ; Fault tolerant systems ; Fault-tolerant robots ; Jacobian matrices ; Kinematics ; locked joint failure ; Manipulators ; Redundancy ; redundant robots ; robot kinematics ; Servers ; workspace analysis</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</citedby><cites>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7339708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ben-Gharbia, Khaled M.</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Roberts, Rodney G.</creatorcontrib><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</description><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Fault-tolerant robots</subject><subject>Jacobian matrices</subject><subject>Kinematics</subject><subject>locked joint failure</subject><subject>Manipulators</subject><subject>Redundancy</subject><subject>redundant robots</subject><subject>robot kinematics</subject><subject>Servers</subject><subject>workspace analysis</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOOZ-gHgT8LozX22SS5nfbgzcvPCqZOmpZnRNTdKJ_no7Nnb1HjjPew48SXJJ8JgQrG6Wi9lkTDHJxpQrwZk6SQaU5DKllNHT40zy82QUwhpjTKjMGc4HycerbWCjozXoDoL9bJCr0Ew3tu1qHZ0P6MfGL7SALTToDbau7iKgF2ebGNC8jXZj_6BElfPoQXd1REtXg9eNgYvkrNJ1gNEhh8n7w_1y8pRO54_Pk9tpaqhiMRW6lNyUnAvFaU6rPnKTGY2zimNhVpVeGZobTUH3GygZSEKUKDO9YorIkg2T6_3d1rvvDkIs1q7zTf-yIJJhlUnMRU-RPWW8C8FDVbTebrT_LQgudhKLncRiJ7E4SOw7V_uOBYAjLxhTAkv2D9mlbfo</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Ben-Gharbia, Khaled M.</creator><creator>Maciejewski, Anthony A.</creator><creator>Roberts, Rodney G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><author>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Fault-tolerant robots</topic><topic>Jacobian matrices</topic><topic>Kinematics</topic><topic>locked joint failure</topic><topic>Manipulators</topic><topic>Redundancy</topic><topic>redundant robots</topic><topic>robot kinematics</topic><topic>Servers</topic><topic>workspace analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Gharbia, Khaled M.</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Roberts, Rodney G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben-Gharbia, Khaled M.</au><au>Maciejewski, Anthony A.</au><au>Roberts, Rodney G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2016-10</date><risdate>2016</risdate><volume>46</volume><issue>10</issue><spage>1364</spage><epage>1373</epage><pages>1364-1373</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2015.2497439</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373
issn 2168-2216
2168-2232
language eng
recordid cdi_ieee_primary_7339708
source IEEE Electronic Library (IEL)
subjects Fault tolerance
Fault tolerant systems
Fault-tolerant robots
Jacobian matrices
Kinematics
locked joint failure
Manipulators
Redundancy
redundant robots
robot kinematics
Servers
workspace analysis
title Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinematic%20Design%20of%20Manipulators%20with%20Seven%20Revolute%20Joints%20Optimized%20for%20Fault%20Tolerance&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Ben-Gharbia,%20Khaled%20M.&rft.date=2016-10&rft.volume=46&rft.issue=10&rft.spage=1364&rft.epage=1373&rft.pages=1364-1373&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2015.2497439&rft_dat=%3Cproquest_RIE%3E4223643621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830958047&rft_id=info:pmid/&rft_ieee_id=7339708&rfr_iscdi=true