Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance
A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from singl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1373 |
---|---|
container_issue | 10 |
container_start_page | 1364 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 46 |
creator | Ben-Gharbia, Khaled M. Maciejewski, Anthony A. Roberts, Rodney G. |
description | A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators. |
doi_str_mv | 10.1109/TSMC.2015.2497439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7339708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339708</ieee_id><sourcerecordid>4223643621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOOZ-gHgT8LozX22SS5nfbgzcvPCqZOmpZnRNTdKJ_no7Nnb1HjjPew48SXJJ8JgQrG6Wi9lkTDHJxpQrwZk6SQaU5DKllNHT40zy82QUwhpjTKjMGc4HycerbWCjozXoDoL9bJCr0Ew3tu1qHZ0P6MfGL7SALTToDbau7iKgF2ebGNC8jXZj_6BElfPoQXd1REtXg9eNgYvkrNJ1gNEhh8n7w_1y8pRO54_Pk9tpaqhiMRW6lNyUnAvFaU6rPnKTGY2zimNhVpVeGZobTUH3GygZSEKUKDO9YorIkg2T6_3d1rvvDkIs1q7zTf-yIJJhlUnMRU-RPWW8C8FDVbTebrT_LQgudhKLncRiJ7E4SOw7V_uOBYAjLxhTAkv2D9mlbfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830958047</pqid></control><display><type>article</type><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><source>IEEE Electronic Library (IEL)</source><creator>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</creator><creatorcontrib>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</creatorcontrib><description>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2015.2497439</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Fault tolerance ; Fault tolerant systems ; Fault-tolerant robots ; Jacobian matrices ; Kinematics ; locked joint failure ; Manipulators ; Redundancy ; redundant robots ; robot kinematics ; Servers ; workspace analysis</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</citedby><cites>FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7339708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ben-Gharbia, Khaled M.</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Roberts, Rodney G.</creatorcontrib><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</description><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Fault-tolerant robots</subject><subject>Jacobian matrices</subject><subject>Kinematics</subject><subject>locked joint failure</subject><subject>Manipulators</subject><subject>Redundancy</subject><subject>redundant robots</subject><subject>robot kinematics</subject><subject>Servers</subject><subject>workspace analysis</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOOZ-gHgT8LozX22SS5nfbgzcvPCqZOmpZnRNTdKJ_no7Nnb1HjjPew48SXJJ8JgQrG6Wi9lkTDHJxpQrwZk6SQaU5DKllNHT40zy82QUwhpjTKjMGc4HycerbWCjozXoDoL9bJCr0Ew3tu1qHZ0P6MfGL7SALTToDbau7iKgF2ebGNC8jXZj_6BElfPoQXd1REtXg9eNgYvkrNJ1gNEhh8n7w_1y8pRO54_Pk9tpaqhiMRW6lNyUnAvFaU6rPnKTGY2zimNhVpVeGZobTUH3GygZSEKUKDO9YorIkg2T6_3d1rvvDkIs1q7zTf-yIJJhlUnMRU-RPWW8C8FDVbTebrT_LQgudhKLncRiJ7E4SOw7V_uOBYAjLxhTAkv2D9mlbfo</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Ben-Gharbia, Khaled M.</creator><creator>Maciejewski, Anthony A.</creator><creator>Roberts, Rodney G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</title><author>Ben-Gharbia, Khaled M. ; Maciejewski, Anthony A. ; Roberts, Rodney G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7ad84cd44794262f7946c5ca05f407cbfabc26ca2ea946ed3e81197d5ab3918d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Fault-tolerant robots</topic><topic>Jacobian matrices</topic><topic>Kinematics</topic><topic>locked joint failure</topic><topic>Manipulators</topic><topic>Redundancy</topic><topic>redundant robots</topic><topic>robot kinematics</topic><topic>Servers</topic><topic>workspace analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-Gharbia, Khaled M.</creatorcontrib><creatorcontrib>Maciejewski, Anthony A.</creatorcontrib><creatorcontrib>Roberts, Rodney G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben-Gharbia, Khaled M.</au><au>Maciejewski, Anthony A.</au><au>Roberts, Rodney G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2016-10</date><risdate>2016</risdate><volume>46</volume><issue>10</issue><spage>1364</spage><epage>1373</epage><pages>1364-1373</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>A local definition of fault tolerance, based on properties of the manipulator Jacobian, is used to generate the kinematics of seven degree-of-freedom (DOF) revolute joint manipulators. The measure of fault tolerance used is the smallest singular value over all possible Jacobians resulting from single locked joint failures. The canonical form for an optimal fault-tolerant Jacobian that maximizes this measure has been previously identified. It has also been known that it is not possible to generate a seven DOF revolute manipulator that corresponds to this theoretically optimal Jacobian. However, in this paper, it is shown how to generate physically realizable Jacobians that are very close to being optimal. It is further shown that there exist 7! different manipulators, from a single Jacobian, that have the same local fault tolerance properties. To evaluate the global properties of these different manipulators, a technique for computing six-dimensional fault-tolerant workspaces is presented. The size of these workspaces vary significantly among these 7! manipulators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2015.2497439</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2016-10, Vol.46 (10), p.1364-1373 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_ieee_primary_7339708 |
source | IEEE Electronic Library (IEL) |
subjects | Fault tolerance Fault tolerant systems Fault-tolerant robots Jacobian matrices Kinematics locked joint failure Manipulators Redundancy redundant robots robot kinematics Servers workspace analysis |
title | Kinematic Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinematic%20Design%20of%20Manipulators%20with%20Seven%20Revolute%20Joints%20Optimized%20for%20Fault%20Tolerance&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Ben-Gharbia,%20Khaled%20M.&rft.date=2016-10&rft.volume=46&rft.issue=10&rft.spage=1364&rft.epage=1373&rft.pages=1364-1373&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2015.2497439&rft_dat=%3Cproquest_RIE%3E4223643621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830958047&rft_id=info:pmid/&rft_ieee_id=7339708&rfr_iscdi=true |