Coupled Deep Autoencoder for Single Image Super-Resolution

Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-01, Vol.47 (1), p.27-37
Hauptverfasser: Zeng, Kun, Yu, Jun, Wang, Ruxin, Li, Cuihua, Tao, Dacheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 27
container_title IEEE transactions on cybernetics
container_volume 47
creator Zeng, Kun
Yu, Jun
Wang, Ruxin
Li, Cuihua
Tao, Dacheng
description Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.
doi_str_mv 10.1109/TCYB.2015.2501373
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7339460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7339460</ieee_id><sourcerecordid>1850210996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoTub-ABGk4MVLZ_KSpq23WX8NBoKbB08lbV9GR9fUpD3435uxuYO5JLx8vo_3PoRcMTpljKb3q-zrcQqURVOIKOMxPyEXwGQSAsTR6fEt4xGZOLeh_iS-lCbnZARSQiQEXJCHzAxdg1XwhNgFs6E32JamQhtoY4Nl3a4bDOZbtcZgOXRoww90phn62rSX5EyrxuHkcI_J58vzKnsLF--v82y2CEsu0j7EQkrUshKYFErHHBGqVEQaaMywwIIKnSrgFOJKCVSYCIwxAqBaK_BD8zG52_ftrPke0PX5tnYlNo1q0QwuZ4lfRwDnzKO3_9CNGWzrp_NURMF7S6Wn2J4qrXHOos47W2-V_ckZzXdu853bfOc2P7j1mZtD56HYYnVM_Jn0wPUeqBHx-O2TqZCU_wIZz3ut</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850210996</pqid></control><display><type>article</type><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><source>IEEE Xplore</source><creator>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</creator><creatorcontrib>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</creatorcontrib><description>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2501373</identifier><identifier>PMID: 26625442</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Autoencoder ; Blurring ; deep learning ; Dictionaries ; Encoding ; Experimentation ; Feature extraction ; Image coding ; Image reconstruction ; Image resolution ; Machine learning ; Manifolds ; Neural networks ; Representations ; single image super-resolution (SR)</subject><ispartof>IEEE transactions on cybernetics, 2017-01, Vol.47 (1), p.27-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</citedby><cites>FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7339460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7339460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26625442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</description><subject>Autoencoder</subject><subject>Blurring</subject><subject>deep learning</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Experimentation</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Neural networks</subject><subject>Representations</subject><subject>single image super-resolution (SR)</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoTub-ABGk4MVLZ_KSpq23WX8NBoKbB08lbV9GR9fUpD3435uxuYO5JLx8vo_3PoRcMTpljKb3q-zrcQqURVOIKOMxPyEXwGQSAsTR6fEt4xGZOLeh_iS-lCbnZARSQiQEXJCHzAxdg1XwhNgFs6E32JamQhtoY4Nl3a4bDOZbtcZgOXRoww90phn62rSX5EyrxuHkcI_J58vzKnsLF--v82y2CEsu0j7EQkrUshKYFErHHBGqVEQaaMywwIIKnSrgFOJKCVSYCIwxAqBaK_BD8zG52_ftrPke0PX5tnYlNo1q0QwuZ4lfRwDnzKO3_9CNGWzrp_NURMF7S6Wn2J4qrXHOos47W2-V_ckZzXdu853bfOc2P7j1mZtD56HYYnVM_Jn0wPUeqBHx-O2TqZCU_wIZz3ut</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zeng, Kun</creator><creator>Yu, Jun</creator><creator>Wang, Ruxin</creator><creator>Li, Cuihua</creator><creator>Tao, Dacheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Coupled Deep Autoencoder for Single Image Super-Resolution</title><author>Zeng, Kun ; Yu, Jun ; Wang, Ruxin ; Li, Cuihua ; Tao, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-eb66ef6d4e8baf73ee2d945f2071ebeb04f9a23027da4eae84e7e5220ffa20003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoencoder</topic><topic>Blurring</topic><topic>deep learning</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Experimentation</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Neural networks</topic><topic>Representations</topic><topic>single image super-resolution (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Wang, Ruxin</creatorcontrib><creatorcontrib>Li, Cuihua</creatorcontrib><creatorcontrib>Tao, Dacheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Kun</au><au>Yu, Jun</au><au>Wang, Ruxin</au><au>Li, Cuihua</au><au>Tao, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Deep Autoencoder for Single Image Super-Resolution</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>47</volume><issue>1</issue><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Sparse coding has been widely applied to learning-based single image super-resolution (SR) and has obtained promising performance by jointly learning effective representations for low-resolution (LR) and high-resolution (HR) image patch pairs. However, the resulting HR images often suffer from ringing, jaggy, and blurring artifacts due to the strong yet ad hoc assumptions that the LR image patch representation is equal to, is linear with, lies on a manifold similar to, or has the same support set as the corresponding HR image patch representation. Motivated by the success of deep learning, we develop a data-driven model coupled deep autoencoder (CDA) for single image SR. CDA is based on a new deep architecture and has high representational capability. CDA simultaneously learns the intrinsic representations of LR and HR image patches and a big-data-driven function that precisely maps these LR representations to their corresponding HR representations. Extensive experimentation demonstrates the superior effectiveness and efficiency of CDA for single image SR compared to other state-of-the-art methods on Set5 and Set14 datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26625442</pmid><doi>10.1109/TCYB.2015.2501373</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2017-01, Vol.47 (1), p.27-37
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_7339460
source IEEE Xplore
subjects Autoencoder
Blurring
deep learning
Dictionaries
Encoding
Experimentation
Feature extraction
Image coding
Image reconstruction
Image resolution
Machine learning
Manifolds
Neural networks
Representations
single image super-resolution (SR)
title Coupled Deep Autoencoder for Single Image Super-Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Deep%20Autoencoder%20for%20Single%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zeng,%20Kun&rft.date=2017-01-01&rft.volume=47&rft.issue=1&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2501373&rft_dat=%3Cproquest_RIE%3E1850210996%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850210996&rft_id=info:pmid/26625442&rft_ieee_id=7339460&rfr_iscdi=true