A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication

Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2016-03, Vol.15 (3), p.2276-2291
Hauptverfasser: Farooq, Muhammad Junaid, ElSawy, Hesham, Alouini, Mohamed-Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2291
container_issue 3
container_start_page 2276
container_title IEEE transactions on wireless communications
container_volume 15
creator Farooq, Muhammad Junaid
ElSawy, Hesham
Alouini, Mohamed-Slim
description Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.
doi_str_mv 10.1109/TWC.2015.2501817
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7331645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7331645</ieee_id><sourcerecordid>4045758191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvZTIfWZagbcHiwqrLYTKZ2Clpp04SpP_elBZX7y7OvQ8OIfcIE0TIn1ZfxSQF5JOUAyqUF2SEnKskTTN1ecxMJJhKcU1u2nYDgFJwPiKLKX3vgl2btvOWzlzYui4e6DJUrqF1iHTZN51P5mFP5_57_WsO9NOtve0bE2kRttt-563pfNjdkqvaNK27O98x-Xh5XhXz5PVttiimr4llXHaJUGi4MLyyAmRWltWQU2CQlhYAuM3qWkomoURec6iUyTFXIGuXGyGVFWxMHk-7-xh-etd2ehP6uBteapRK5IIrlQ0UnCgbQ9tGV-t99FsTDxpBH4XpQZg-CtNnYUPl4VTxzrl_XDKGIuPsD0iNZXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786965884</pqid></control><display><type>article</type><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</creator><creatorcontrib>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</creatorcontrib><description>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2501817</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Measurement ; Multiaccess communication ; Protocols ; Road transportation ; Sensors ; Spread spectrum communication ; Vehicles</subject><ispartof>IEEE transactions on wireless communications, 2016-03, Vol.15 (3), p.2276-2291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</citedby><cites>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7331645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7331645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farooq, Muhammad Junaid</creatorcontrib><creatorcontrib>ElSawy, Hesham</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</description><subject>Measurement</subject><subject>Multiaccess communication</subject><subject>Protocols</subject><subject>Road transportation</subject><subject>Sensors</subject><subject>Spread spectrum communication</subject><subject>Vehicles</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvZTIfWZagbcHiwqrLYTKZ2Clpp04SpP_elBZX7y7OvQ8OIfcIE0TIn1ZfxSQF5JOUAyqUF2SEnKskTTN1ecxMJJhKcU1u2nYDgFJwPiKLKX3vgl2btvOWzlzYui4e6DJUrqF1iHTZN51P5mFP5_57_WsO9NOtve0bE2kRttt-563pfNjdkqvaNK27O98x-Xh5XhXz5PVttiimr4llXHaJUGi4MLyyAmRWltWQU2CQlhYAuM3qWkomoURec6iUyTFXIGuXGyGVFWxMHk-7-xh-etd2ehP6uBteapRK5IIrlQ0UnCgbQ9tGV-t99FsTDxpBH4XpQZg-CtNnYUPl4VTxzrl_XDKGIuPsD0iNZXs</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Farooq, Muhammad Junaid</creator><creator>ElSawy, Hesham</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><author>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Measurement</topic><topic>Multiaccess communication</topic><topic>Protocols</topic><topic>Road transportation</topic><topic>Sensors</topic><topic>Spread spectrum communication</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Muhammad Junaid</creatorcontrib><creatorcontrib>ElSawy, Hesham</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farooq, Muhammad Junaid</au><au>ElSawy, Hesham</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-03</date><risdate>2016</risdate><volume>15</volume><issue>3</issue><spage>2276</spage><epage>2291</epage><pages>2276-2291</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2501817</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-03, Vol.15 (3), p.2276-2291
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_7331645
source IEEE Electronic Library (IEL)
subjects Measurement
Multiaccess communication
Protocols
Road transportation
Sensors
Spread spectrum communication
Vehicles
title A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Geometry%20Model%20for%20Multi-Hop%20Highway%20Vehicular%20Communication&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Farooq,%20Muhammad%20Junaid&rft.date=2016-03&rft.volume=15&rft.issue=3&rft.spage=2276&rft.epage=2291&rft.pages=2276-2291&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2501817&rft_dat=%3Cproquest_RIE%3E4045758191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786965884&rft_id=info:pmid/&rft_ieee_id=7331645&rfr_iscdi=true