A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication
Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to de...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2016-03, Vol.15 (3), p.2276-2291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2291 |
---|---|
container_issue | 3 |
container_start_page | 2276 |
container_title | IEEE transactions on wireless communications |
container_volume | 15 |
creator | Farooq, Muhammad Junaid ElSawy, Hesham Alouini, Mohamed-Slim |
description | Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen. |
doi_str_mv | 10.1109/TWC.2015.2501817 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7331645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7331645</ieee_id><sourcerecordid>4045758191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvZTIfWZagbcHiwqrLYTKZ2Clpp04SpP_elBZX7y7OvQ8OIfcIE0TIn1ZfxSQF5JOUAyqUF2SEnKskTTN1ecxMJJhKcU1u2nYDgFJwPiKLKX3vgl2btvOWzlzYui4e6DJUrqF1iHTZN51P5mFP5_57_WsO9NOtve0bE2kRttt-563pfNjdkqvaNK27O98x-Xh5XhXz5PVttiimr4llXHaJUGi4MLyyAmRWltWQU2CQlhYAuM3qWkomoURec6iUyTFXIGuXGyGVFWxMHk-7-xh-etd2ehP6uBteapRK5IIrlQ0UnCgbQ9tGV-t99FsTDxpBH4XpQZg-CtNnYUPl4VTxzrl_XDKGIuPsD0iNZXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786965884</pqid></control><display><type>article</type><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</creator><creatorcontrib>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</creatorcontrib><description>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2501817</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Measurement ; Multiaccess communication ; Protocols ; Road transportation ; Sensors ; Spread spectrum communication ; Vehicles</subject><ispartof>IEEE transactions on wireless communications, 2016-03, Vol.15 (3), p.2276-2291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</citedby><cites>FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7331645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7331645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farooq, Muhammad Junaid</creatorcontrib><creatorcontrib>ElSawy, Hesham</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</description><subject>Measurement</subject><subject>Multiaccess communication</subject><subject>Protocols</subject><subject>Road transportation</subject><subject>Sensors</subject><subject>Spread spectrum communication</subject><subject>Vehicles</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvZTIfWZagbcHiwqrLYTKZ2Clpp04SpP_elBZX7y7OvQ8OIfcIE0TIn1ZfxSQF5JOUAyqUF2SEnKskTTN1ecxMJJhKcU1u2nYDgFJwPiKLKX3vgl2btvOWzlzYui4e6DJUrqF1iHTZN51P5mFP5_57_WsO9NOtve0bE2kRttt-563pfNjdkqvaNK27O98x-Xh5XhXz5PVttiimr4llXHaJUGi4MLyyAmRWltWQU2CQlhYAuM3qWkomoURec6iUyTFXIGuXGyGVFWxMHk-7-xh-etd2ehP6uBteapRK5IIrlQ0UnCgbQ9tGV-t99FsTDxpBH4XpQZg-CtNnYUPl4VTxzrl_XDKGIuPsD0iNZXs</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Farooq, Muhammad Junaid</creator><creator>ElSawy, Hesham</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</title><author>Farooq, Muhammad Junaid ; ElSawy, Hesham ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-681a56a5dc6074bbd6a520302bc0005c4ff77370b15f50d8a919807fe9a678c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Measurement</topic><topic>Multiaccess communication</topic><topic>Protocols</topic><topic>Road transportation</topic><topic>Sensors</topic><topic>Spread spectrum communication</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Muhammad Junaid</creatorcontrib><creatorcontrib>ElSawy, Hesham</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farooq, Muhammad Junaid</au><au>ElSawy, Hesham</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-03</date><risdate>2016</risdate><volume>15</volume><issue>3</issue><spage>2276</spage><epage>2291</epage><pages>2276-2291</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Carrier sense multiple access (CSMA) protocol is standardized for vehicular communication to ensure a distributed and efficient communication between vehicles. However, several vehicular applications require efficient multi-hop information dissemination. This paper exploits stochastic geometry to develop a tractable and accurate modeling framework to characterize the multi-hop transmissions for vehicular networks in a multilane highway setup. In particular, we study the tradeoffs between per-hop packet forward progress, per-hop transmission success probability, and spatial frequency reuse (SFR) efficiency imposed by different packet forwarding schemes, namely, most forward with fixed radius (MFR), the nearest with forward progress (NFP), and the random with forward progress (RFP). We also define a new performance metric, denoted as the aggregate packet progress (APP), which is a dimensionless quantity that captures the aforementioned tradeoffs. To this end, the developed model reveals the interplay between the spectrum sensing threshold (ρ th ) of the CSMA protocol and the packet forwarding scheme. Our results show that, contrary to ALOHA networks, which always favor NFP, MFR may achieve the highest APP in CSMA networks if ρ th is properly chosen.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2501817</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2016-03, Vol.15 (3), p.2276-2291 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_7331645 |
source | IEEE Electronic Library (IEL) |
subjects | Measurement Multiaccess communication Protocols Road transportation Sensors Spread spectrum communication Vehicles |
title | A Stochastic Geometry Model for Multi-Hop Highway Vehicular Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Geometry%20Model%20for%20Multi-Hop%20Highway%20Vehicular%20Communication&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Farooq,%20Muhammad%20Junaid&rft.date=2016-03&rft.volume=15&rft.issue=3&rft.spage=2276&rft.epage=2291&rft.pages=2276-2291&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2501817&rft_dat=%3Cproquest_RIE%3E4045758191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786965884&rft_id=info:pmid/&rft_ieee_id=7331645&rfr_iscdi=true |