Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing

Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2016-10, Vol.24 (5), p.2795-2808
Hauptverfasser: Chen, Xu, Jiao, Lei, Li, Wenzhong, Fu, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2808
container_issue 5
container_start_page 2795
container_title IEEE/ACM transactions on networking
container_volume 24
creator Chen, Xu
Jiao, Lei
Li, Wenzhong
Fu, Xiaoming
description Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.
doi_str_mv 10.1109/TNET.2015.2487344
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7307234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7307234</ieee_id><sourcerecordid>4224149501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJfsdZoig8REs37dpy43HlKo2LnSz4e1K1YjVXmnNnpIPQI8EFIbh6WX8364JiIgrKVck4v0IzIoTKqZDyespYslzKit6iu5T2GBOGqZyhr8Y533roh2w5doPPNwliVofDcRzM4EOfrZzrgrG-32UuxGwZtr6DvLE7yOoujPYCT_t7dONMl-DhMudo89as6498sXr_rF8XecvLcsh5qyinhrG2spSBBUOV2UpjqWKlNVaoVkiibMVcJRzFoNxWCSNKMMCkw2yOns93jzH8jJAGvQ9j7KeXmihGMOdE8IkiZ6qNIaUITh-jP5j4qwnWJ2f65EyfnOmLs6nzdO54APjnS4ZLyjj7A9j1Z_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831044154</pqid></control><display><type>article</type><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</creator><creatorcontrib>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</creatorcontrib><description>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2015.2487344</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; Computation offloading ; Computational modeling ; Decision making ; Economic models ; Game theory ; Games ; Mobile communication ; Mobile handsets ; mobile-edge cloud computing ; Nash equilibrium ; Wireless communication</subject><ispartof>IEEE/ACM transactions on networking, 2016-10, Vol.24 (5), p.2795-2808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</citedby><cites>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7307234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7307234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Li, Wenzhong</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</description><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Decision making</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>mobile-edge cloud computing</subject><subject>Nash equilibrium</subject><subject>Wireless communication</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJfsdZoig8REs37dpy43HlKo2LnSz4e1K1YjVXmnNnpIPQI8EFIbh6WX8364JiIgrKVck4v0IzIoTKqZDyespYslzKit6iu5T2GBOGqZyhr8Y533roh2w5doPPNwliVofDcRzM4EOfrZzrgrG-32UuxGwZtr6DvLE7yOoujPYCT_t7dONMl-DhMudo89as6498sXr_rF8XecvLcsh5qyinhrG2spSBBUOV2UpjqWKlNVaoVkiibMVcJRzFoNxWCSNKMMCkw2yOns93jzH8jJAGvQ9j7KeXmihGMOdE8IkiZ6qNIaUITh-jP5j4qwnWJ2f65EyfnOmLs6nzdO54APjnS4ZLyjj7A9j1Z_A</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Chen, Xu</creator><creator>Jiao, Lei</creator><creator>Li, Wenzhong</creator><creator>Fu, Xiaoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><author>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Decision making</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>mobile-edge cloud computing</topic><topic>Nash equilibrium</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Li, Wenzhong</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xu</au><au>Jiao, Lei</au><au>Li, Wenzhong</au><au>Fu, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>24</volume><issue>5</issue><spage>2795</spage><epage>2808</epage><pages>2795-2808</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2015.2487344</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2016-10, Vol.24 (5), p.2795-2808
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_7307234
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computation offloading
Computational modeling
Decision making
Economic models
Game theory
Games
Mobile communication
Mobile handsets
mobile-edge cloud computing
Nash equilibrium
Wireless communication
title Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multi-User%20Computation%20Offloading%20for%20Mobile-Edge%20Cloud%20Computing&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Chen,%20Xu&rft.date=2016-10-01&rft.volume=24&rft.issue=5&rft.spage=2795&rft.epage=2808&rft.pages=2795-2808&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2015.2487344&rft_dat=%3Cproquest_RIE%3E4224149501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831044154&rft_id=info:pmid/&rft_ieee_id=7307234&rfr_iscdi=true