Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing
Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wire...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2016-10, Vol.24 (5), p.2795-2808 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2808 |
---|---|
container_issue | 5 |
container_start_page | 2795 |
container_title | IEEE/ACM transactions on networking |
container_volume | 24 |
creator | Chen, Xu Jiao, Lei Li, Wenzhong Fu, Xiaoming |
description | Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases. |
doi_str_mv | 10.1109/TNET.2015.2487344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7307234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7307234</ieee_id><sourcerecordid>4224149501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJfsdZoig8REs37dpy43HlKo2LnSz4e1K1YjVXmnNnpIPQI8EFIbh6WX8364JiIgrKVck4v0IzIoTKqZDyespYslzKit6iu5T2GBOGqZyhr8Y533roh2w5doPPNwliVofDcRzM4EOfrZzrgrG-32UuxGwZtr6DvLE7yOoujPYCT_t7dONMl-DhMudo89as6498sXr_rF8XecvLcsh5qyinhrG2spSBBUOV2UpjqWKlNVaoVkiibMVcJRzFoNxWCSNKMMCkw2yOns93jzH8jJAGvQ9j7KeXmihGMOdE8IkiZ6qNIaUITh-jP5j4qwnWJ2f65EyfnOmLs6nzdO54APjnS4ZLyjj7A9j1Z_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831044154</pqid></control><display><type>article</type><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</creator><creatorcontrib>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</creatorcontrib><description>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2015.2487344</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cloud computing ; Computation offloading ; Computational modeling ; Decision making ; Economic models ; Game theory ; Games ; Mobile communication ; Mobile handsets ; mobile-edge cloud computing ; Nash equilibrium ; Wireless communication</subject><ispartof>IEEE/ACM transactions on networking, 2016-10, Vol.24 (5), p.2795-2808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</citedby><cites>FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7307234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7307234$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Li, Wenzhong</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</description><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Decision making</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>mobile-edge cloud computing</subject><subject>Nash equilibrium</subject><subject>Wireless communication</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJfsdZoig8REs37dpy43HlKo2LnSz4e1K1YjVXmnNnpIPQI8EFIbh6WX8364JiIgrKVck4v0IzIoTKqZDyespYslzKit6iu5T2GBOGqZyhr8Y533roh2w5doPPNwliVofDcRzM4EOfrZzrgrG-32UuxGwZtr6DvLE7yOoujPYCT_t7dONMl-DhMudo89as6498sXr_rF8XecvLcsh5qyinhrG2spSBBUOV2UpjqWKlNVaoVkiibMVcJRzFoNxWCSNKMMCkw2yOns93jzH8jJAGvQ9j7KeXmihGMOdE8IkiZ6qNIaUITh-jP5j4qwnWJ2f65EyfnOmLs6nzdO54APjnS4ZLyjj7A9j1Z_A</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Chen, Xu</creator><creator>Jiao, Lei</creator><creator>Li, Wenzhong</creator><creator>Fu, Xiaoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</title><author>Chen, Xu ; Jiao, Lei ; Li, Wenzhong ; Fu, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4c8242a33c9d23edea28ab6ad2837dad58c5618d93f95f20e8fb85a57eae36f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Decision making</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>mobile-edge cloud computing</topic><topic>Nash equilibrium</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Jiao, Lei</creatorcontrib><creatorcontrib>Li, Wenzhong</creatorcontrib><creatorcontrib>Fu, Xiaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xu</au><au>Jiao, Lei</au><au>Li, Wenzhong</au><au>Fu, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>24</volume><issue>5</issue><spage>2795</spage><epage>2808</epage><pages>2795-2808</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2015.2487344</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2016-10, Vol.24 (5), p.2795-2808 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_7307234 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Computation offloading Computational modeling Decision making Economic models Game theory Games Mobile communication Mobile handsets mobile-edge cloud computing Nash equilibrium Wireless communication |
title | Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multi-User%20Computation%20Offloading%20for%20Mobile-Edge%20Cloud%20Computing&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Chen,%20Xu&rft.date=2016-10-01&rft.volume=24&rft.issue=5&rft.spage=2795&rft.epage=2808&rft.pages=2795-2808&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2015.2487344&rft_dat=%3Cproquest_RIE%3E4224149501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831044154&rft_id=info:pmid/&rft_ieee_id=7307234&rfr_iscdi=true |