The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking
This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dime...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-02, Vol.64 (4), p.948-958 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 4 |
container_start_page | 948 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Kulikov, Gennady Yu Kulikova, Maria V. |
description | This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for testing nonlinear filtering algorithms. Our numerical results show that all the methods can be used for practical target tracking, but the Accurate Continuous-Discrete Extended Kalman Filter is more flexible and robust. It treats successfully (and without any manual tuning) the air traffic control scenario for various initial data and for a range of sampling times. |
doi_str_mv | 10.1109/TSP.2015.2493985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7307216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7307216</ieee_id><sourcerecordid>1835645687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-deaa69c8d343fbe02b465295c16bd21e7cd11dd93e53e834150e8566098a239e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b853NsdTWr4KiK3gLaTLVrdvdmuyC_nsjLR48zTA87_DyIHRK8IgQrC_L58cRxUSMKNdMF2IPDYjmJMdcyf20Y8FyUajXQ3QU4wpjwrmWA3RXvkM2dq4PtoNs0jZd1fRtH_OrKroA6Tb96qDx4LN7W69tk82quoOQLduQPVlvQ1YG6z6q5u0YHSxtHeFkN4foZTYtJzf5_OH6djKe545R3uUerJXaFZ5xtlwApgsuBdXCEbnwlIBynhDvNQPBoGCcCAyFkBLrwlKmgQ3RxfbvJrSfPcTOrFNXqGvbQGpuSMGE5EIWKqHn_9BV24cmtTNECY2F4oImCm8pF9oYAyzNJlRrG74NweZXrklyza9cs5ObImfbSAUAf7hiWFEi2Q8a53QV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759057452</pqid></control><display><type>article</type><title>The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Kulikov, Gennady Yu ; Kulikova, Maria V.</creator><creatorcontrib>Kulikov, Gennady Yu ; Kulikova, Maria V.</creatorcontrib><description>This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for testing nonlinear filtering algorithms. Our numerical results show that all the methods can be used for practical target tracking, but the Accurate Continuous-Discrete Extended Kalman Filter is more flexible and robust. It treats successfully (and without any manual tuning) the air traffic control scenario for various initial data and for a range of sampling times.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2493985</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accurate continuous-discrete extended Kalman filter ; Aircraft ; Algorithms ; continuous-discrete cubature Kalman filter ; continuous-discrete stochastic model ; continuous-discrete unscented Kalman filter ; Covariance matrices ; Extended Kalman filter ; Filtering ; Filtration ; Kalman filters ; Mathematical model ; Radar tracking ; Sampling ; Signal processing algorithms ; Stochastic processes ; Time measurement ; Tuning</subject><ispartof>IEEE transactions on signal processing, 2016-02, Vol.64 (4), p.948-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-deaa69c8d343fbe02b465295c16bd21e7cd11dd93e53e834150e8566098a239e3</citedby><cites>FETCH-LOGICAL-c324t-deaa69c8d343fbe02b465295c16bd21e7cd11dd93e53e834150e8566098a239e3</cites><orcidid>0000-0002-1663-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7307216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7307216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulikov, Gennady Yu</creatorcontrib><creatorcontrib>Kulikova, Maria V.</creatorcontrib><title>The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for testing nonlinear filtering algorithms. Our numerical results show that all the methods can be used for practical target tracking, but the Accurate Continuous-Discrete Extended Kalman Filter is more flexible and robust. It treats successfully (and without any manual tuning) the air traffic control scenario for various initial data and for a range of sampling times.</description><subject>Accurate continuous-discrete extended Kalman filter</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>continuous-discrete cubature Kalman filter</subject><subject>continuous-discrete stochastic model</subject><subject>continuous-discrete unscented Kalman filter</subject><subject>Covariance matrices</subject><subject>Extended Kalman filter</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Radar tracking</subject><subject>Sampling</subject><subject>Signal processing algorithms</subject><subject>Stochastic processes</subject><subject>Time measurement</subject><subject>Tuning</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b853NsdTWr4KiK3gLaTLVrdvdmuyC_nsjLR48zTA87_DyIHRK8IgQrC_L58cRxUSMKNdMF2IPDYjmJMdcyf20Y8FyUajXQ3QU4wpjwrmWA3RXvkM2dq4PtoNs0jZd1fRtH_OrKroA6Tb96qDx4LN7W69tk82quoOQLduQPVlvQ1YG6z6q5u0YHSxtHeFkN4foZTYtJzf5_OH6djKe545R3uUerJXaFZ5xtlwApgsuBdXCEbnwlIBynhDvNQPBoGCcCAyFkBLrwlKmgQ3RxfbvJrSfPcTOrFNXqGvbQGpuSMGE5EIWKqHn_9BV24cmtTNECY2F4oImCm8pF9oYAyzNJlRrG74NweZXrklyza9cs5ObImfbSAUAf7hiWFEi2Q8a53QV</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Kulikov, Gennady Yu</creator><creator>Kulikova, Maria V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1663-6009</orcidid></search><sort><creationdate>20160215</creationdate><title>The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking</title><author>Kulikov, Gennady Yu ; Kulikova, Maria V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-deaa69c8d343fbe02b465295c16bd21e7cd11dd93e53e834150e8566098a239e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accurate continuous-discrete extended Kalman filter</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>continuous-discrete cubature Kalman filter</topic><topic>continuous-discrete stochastic model</topic><topic>continuous-discrete unscented Kalman filter</topic><topic>Covariance matrices</topic><topic>Extended Kalman filter</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Radar tracking</topic><topic>Sampling</topic><topic>Signal processing algorithms</topic><topic>Stochastic processes</topic><topic>Time measurement</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, Gennady Yu</creatorcontrib><creatorcontrib>Kulikova, Maria V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulikov, Gennady Yu</au><au>Kulikova, Maria V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-02-15</date><risdate>2016</risdate><volume>64</volume><issue>4</issue><spage>948</spage><epage>958</epage><pages>948-958</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper elaborates the Accurate Continuous-Discrete Extended Kalman Filter grounded in an ODE solver with global error control and its comparison to the Continuous-Discrete Cubature and Unscented Kalman Filters. All these state estimators are examined in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn. The latter is considered to be a challenging one for testing nonlinear filtering algorithms. Our numerical results show that all the methods can be used for practical target tracking, but the Accurate Continuous-Discrete Extended Kalman Filter is more flexible and robust. It treats successfully (and without any manual tuning) the air traffic control scenario for various initial data and for a range of sampling times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2493985</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1663-6009</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-02, Vol.64 (4), p.948-958 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_7307216 |
source | IEEE Electronic Library (IEL) |
subjects | Accurate continuous-discrete extended Kalman filter Aircraft Algorithms continuous-discrete cubature Kalman filter continuous-discrete stochastic model continuous-discrete unscented Kalman filter Covariance matrices Extended Kalman filter Filtering Filtration Kalman filters Mathematical model Radar tracking Sampling Signal processing algorithms Stochastic processes Time measurement Tuning |
title | The Accurate Continuous-Discrete Extended Kalman Filter for Radar Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Accurate%20Continuous-Discrete%20Extended%20Kalman%20Filter%20for%20Radar%20Tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kulikov,%20Gennady%20Yu&rft.date=2016-02-15&rft.volume=64&rft.issue=4&rft.spage=948&rft.epage=958&rft.pages=948-958&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2493985&rft_dat=%3Cproquest_RIE%3E1835645687%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759057452&rft_id=info:pmid/&rft_ieee_id=7307216&rfr_iscdi=true |