Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure

This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2016-03, Vol.27 (3), p.686-697
Hauptverfasser: Li, Ning, Cao, Jinde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 3
container_start_page 686
container_title IEEE transaction on neural networks and learning systems
container_volume 27
creator Li, Ning
Cao, Jinde
description This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω -measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.
doi_str_mv 10.1109/TNNLS.2015.2480784
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7294682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7294682</ieee_id><sourcerecordid>1767079143</sourcerecordid><originalsourceid>FETCH-LOGICAL-i297t-47c77aa7ce465b88d04a3a6055bdc08b7a8706ac077886727dbe27b7823fa4083</originalsourceid><addsrcrecordid>eNqNkEtLw0AQgBdRrNT-AQXJ0Uvq7mazszlq8QVpBVvBgxAmybZGk27dTZT6611o7VXn8g3Mx7wIOWF0yBhNLmaTSTodcsriIReKghJ75IgzyUMeKbW_y-G5RwbOvVEfksZSJIekx6WQnAt5RB5TXATT9bJ4tWZZfWNbmWVg5sFYN7ZyrbHhFTpdBiPTrWrPie4s1h7tl7HvLvisMHgxjV5gEI41us7qY3Iwx9rpwZZ98nRzPRvdhenD7f3oMg0rnkAbCigAEKHQQsa5UiUVGKFfMc7LgqocUAGVWFAApSRwKHPNIQfFozkKqqI-Od_0XVnz0WnXZk3lCl3XuNSmcxlTTFIpKMT_UKnyEyLF_lZBAoWEicirZ1u1yxtdZitbNWjX2e93vXC6ESqt9a4MPBHSX_ED1xiEkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767079143</pqid></control><display><type>article</type><title>Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ning ; Cao, Jinde</creator><creatorcontrib>Li, Ning ; Cao, Jinde</creatorcontrib><description>This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω -measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2480784</identifier><identifier>PMID: 26462246</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Criteria ; Delays ; Errors ; Feedback control ; Inequalities ; Joining ; lag synchronization ; Learning ; Learning systems ; Mathematics ; memristor-based coupled neural networks ; Memristors ; Neural networks ; parameters mismatch ; Switches ; Synchronism ; Synchronization ; transmittal delay</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-03, Vol.27 (3), p.686-697</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7294682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7294682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26462246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω -measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.</description><subject>Criteria</subject><subject>Delays</subject><subject>Errors</subject><subject>Feedback control</subject><subject>Inequalities</subject><subject>Joining</subject><subject>lag synchronization</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Mathematics</subject><subject>memristor-based coupled neural networks</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>parameters mismatch</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>transmittal delay</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkEtLw0AQgBdRrNT-AQXJ0Uvq7mazszlq8QVpBVvBgxAmybZGk27dTZT6611o7VXn8g3Mx7wIOWF0yBhNLmaTSTodcsriIReKghJ75IgzyUMeKbW_y-G5RwbOvVEfksZSJIekx6WQnAt5RB5TXATT9bJ4tWZZfWNbmWVg5sFYN7ZyrbHhFTpdBiPTrWrPie4s1h7tl7HvLvisMHgxjV5gEI41us7qY3Iwx9rpwZZ98nRzPRvdhenD7f3oMg0rnkAbCigAEKHQQsa5UiUVGKFfMc7LgqocUAGVWFAApSRwKHPNIQfFozkKqqI-Od_0XVnz0WnXZk3lCl3XuNSmcxlTTFIpKMT_UKnyEyLF_lZBAoWEicirZ1u1yxtdZitbNWjX2e93vXC6ESqt9a4MPBHSX_ED1xiEkg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Li, Ning</creator><creator>Cao, Jinde</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SP</scope><scope>F28</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure</title><author>Li, Ning ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i297t-47c77aa7ce465b88d04a3a6055bdc08b7a8706ac077886727dbe27b7823fa4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Criteria</topic><topic>Delays</topic><topic>Errors</topic><topic>Feedback control</topic><topic>Inequalities</topic><topic>Joining</topic><topic>lag synchronization</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Mathematics</topic><topic>memristor-based coupled neural networks</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>parameters mismatch</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>transmittal delay</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ning</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-03</date><risdate>2016</risdate><volume>27</volume><issue>3</issue><spage>686</spage><epage>697</epage><pages>686-697</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper deals with the lag synchronization problem of memristor-based coupled neural networks with or without parameter mismatch using two different algorithms. Firstly, we consider the memristor-based neural networks with parameter mismatch, lag complete synchronization cannot be achieved due to parameter mismatch, the concept of lag quasi-synchronization is introduced. Based on the ω -measure method and generalized Halanay inequality, the error level is estimated, a new lag quasi-synchronization scheme is proposed to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error level. Secondly, by constructing Lyapunov functional and applying common Halanary inequality, several lag complete synchronization criteria for the memristor-based neural networks with parameter match are given, which are easy to verify. Finally, two examples are given to illustrate the effectiveness of the proposed lag quasi-synchronization or lag complete synchronization criteria, which well support theoretical results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26462246</pmid><doi>10.1109/TNNLS.2015.2480784</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2016-03, Vol.27 (3), p.686-697
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_7294682
source IEEE Electronic Library (IEL)
subjects Criteria
Delays
Errors
Feedback control
Inequalities
Joining
lag synchronization
Learning
Learning systems
Mathematics
memristor-based coupled neural networks
Memristors
Neural networks
parameters mismatch
Switches
Synchronism
Synchronization
transmittal delay
title Lag Synchronization of Memristor-Based Coupled Neural Networks via \omega -Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lag%20Synchronization%20of%20Memristor-Based%20Coupled%20Neural%20Networks%20via%20%5Comega%20-Measure&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Ning&rft.date=2016-03&rft.volume=27&rft.issue=3&rft.spage=686&rft.epage=697&rft.pages=686-697&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2480784&rft_dat=%3Cproquest_RIE%3E1767079143%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767079143&rft_id=info:pmid/26462246&rft_ieee_id=7294682&rfr_iscdi=true