Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices
Robust and reliable detection of falls is crucial especially for elderly activity monitoring systems. In this letter, we present a fall detection system using wearable devices, e.g., smartphones, and tablets, equipped with cameras and accelerometers. Since the portable device is worn by the subject,...
Gespeichert in:
Veröffentlicht in: | IEEE embedded systems letters 2016-03, Vol.8 (1), p.6-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | IEEE embedded systems letters |
container_volume | 8 |
creator | Ozcan, Koray Velipasalar, Senem |
description | Robust and reliable detection of falls is crucial especially for elderly activity monitoring systems. In this letter, we present a fall detection system using wearable devices, e.g., smartphones, and tablets, equipped with cameras and accelerometers. Since the portable device is worn by the subject, monitoring is not limited to confined areas, and extends to wherever the subject may travel, as opposed to static sensors installed in certain rooms. Moreover, a camera provides an abundance of information, and the results presented here show that fusing camera and accelerometer data not only increases the detection rate, but also decreases the number of false alarms compared to only accelerometer-based or only camera-based systems. We employ histograms of edge orientations together with the gradient local binary patterns for the camera-based part of fall detection. We compared the performance of the proposed method with that of using original histograms of oriented gradients (HOG) as well as a modified version of HOG. Experimental results show that the proposed method outperforms using original HOG and modified HOG, and provides lower false positive rates for the camera-based detection. Moreover, we have employed an accelerometer-based fall detection method, and fused these two sensor modalities to have a robust fall detection system. Experimental results and trials with actual Samsung Galaxy phones show that the proposed method, combining two different sensor modalities, provides much higher sensitivity, and a significant decrease in the number of false positives during daily activities, compared to accelerometer-only and camera-only methods. |
doi_str_mv | 10.1109/LES.2015.2487241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7289390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7289390</ieee_id><sourcerecordid>4047900801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-1ac67d5c996c347a0a5df4a5c9027e2a3d8d0413de547508a4689b27837cbda33</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMoWGr3gpsBN26m5jWTZFn7ULGgoOIy3Ca3MGWmU5Op4L83Y6ULQyDhcr7LxyHkktExY9TcLuevY05ZMeZSKy7ZCRkwI0VOS8VOj_9SnJNRjBuaTiFVIYoBefpACLCqMZtCgwHyDLY-mziHNYa2wQ5DfgcRfbaAus5maeC6qt1m6b60ofuNzvCrchgvyNka6oijv3dI3hfzt-lDvny-f5xOlrmTgnc5A1cqXzhjSiekAgqFX0tIA8oVchBeeyqZ8NiXpBpkqc2KKy2UW3kQYkhuDnt3of3cY-xsU8VUuIYttvtomWYllYYXMqHX_9BNuw_b1M4ylVSVUoueogfKhTbGgGu7C1UD4dsyanvBNgm2vWD7JzhFrg6RChGPuOLaCEPFD2qrdCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787264834</pqid></control><display><type>article</type><title>Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Ozcan, Koray ; Velipasalar, Senem</creator><creatorcontrib>Ozcan, Koray ; Velipasalar, Senem</creatorcontrib><description>Robust and reliable detection of falls is crucial especially for elderly activity monitoring systems. In this letter, we present a fall detection system using wearable devices, e.g., smartphones, and tablets, equipped with cameras and accelerometers. Since the portable device is worn by the subject, monitoring is not limited to confined areas, and extends to wherever the subject may travel, as opposed to static sensors installed in certain rooms. Moreover, a camera provides an abundance of information, and the results presented here show that fusing camera and accelerometer data not only increases the detection rate, but also decreases the number of false alarms compared to only accelerometer-based or only camera-based systems. We employ histograms of edge orientations together with the gradient local binary patterns for the camera-based part of fall detection. We compared the performance of the proposed method with that of using original histograms of oriented gradients (HOG) as well as a modified version of HOG. Experimental results show that the proposed method outperforms using original HOG and modified HOG, and provides lower false positive rates for the camera-based detection. Moreover, we have employed an accelerometer-based fall detection method, and fused these two sensor modalities to have a robust fall detection system. Experimental results and trials with actual Samsung Galaxy phones show that the proposed method, combining two different sensor modalities, provides much higher sensitivity, and a significant decrease in the number of false positives during daily activities, compared to accelerometer-only and camera-only methods.</description><identifier>ISSN: 1943-0663</identifier><identifier>EISSN: 1943-0671</identifier><identifier>DOI: 10.1109/LES.2015.2487241</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accelerometers ; Cameras ; Devices ; Fall detection ; gradient local binary patterns ; histogram of oriented gradients ; Histograms ; Image edge detection ; Monitoring ; Portability ; Sensitivity ; Sensors ; Smart phones ; smartphone ; Tablet computers ; wearable camera</subject><ispartof>IEEE embedded systems letters, 2016-03, Vol.8 (1), p.6-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-1ac67d5c996c347a0a5df4a5c9027e2a3d8d0413de547508a4689b27837cbda33</citedby><cites>FETCH-LOGICAL-c432t-1ac67d5c996c347a0a5df4a5c9027e2a3d8d0413de547508a4689b27837cbda33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7289390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7289390$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozcan, Koray</creatorcontrib><creatorcontrib>Velipasalar, Senem</creatorcontrib><title>Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>Robust and reliable detection of falls is crucial especially for elderly activity monitoring systems. In this letter, we present a fall detection system using wearable devices, e.g., smartphones, and tablets, equipped with cameras and accelerometers. Since the portable device is worn by the subject, monitoring is not limited to confined areas, and extends to wherever the subject may travel, as opposed to static sensors installed in certain rooms. Moreover, a camera provides an abundance of information, and the results presented here show that fusing camera and accelerometer data not only increases the detection rate, but also decreases the number of false alarms compared to only accelerometer-based or only camera-based systems. We employ histograms of edge orientations together with the gradient local binary patterns for the camera-based part of fall detection. We compared the performance of the proposed method with that of using original histograms of oriented gradients (HOG) as well as a modified version of HOG. Experimental results show that the proposed method outperforms using original HOG and modified HOG, and provides lower false positive rates for the camera-based detection. Moreover, we have employed an accelerometer-based fall detection method, and fused these two sensor modalities to have a robust fall detection system. Experimental results and trials with actual Samsung Galaxy phones show that the proposed method, combining two different sensor modalities, provides much higher sensitivity, and a significant decrease in the number of false positives during daily activities, compared to accelerometer-only and camera-only methods.</description><subject>Accelerometers</subject><subject>Cameras</subject><subject>Devices</subject><subject>Fall detection</subject><subject>gradient local binary patterns</subject><subject>histogram of oriented gradients</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Monitoring</subject><subject>Portability</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>smartphone</subject><subject>Tablet computers</subject><subject>wearable camera</subject><issn>1943-0663</issn><issn>1943-0671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMoWGr3gpsBN26m5jWTZFn7ULGgoOIy3Ca3MGWmU5Op4L83Y6ULQyDhcr7LxyHkktExY9TcLuevY05ZMeZSKy7ZCRkwI0VOS8VOj_9SnJNRjBuaTiFVIYoBefpACLCqMZtCgwHyDLY-mziHNYa2wQ5DfgcRfbaAus5maeC6qt1m6b60ofuNzvCrchgvyNka6oijv3dI3hfzt-lDvny-f5xOlrmTgnc5A1cqXzhjSiekAgqFX0tIA8oVchBeeyqZ8NiXpBpkqc2KKy2UW3kQYkhuDnt3of3cY-xsU8VUuIYttvtomWYllYYXMqHX_9BNuw_b1M4ylVSVUoueogfKhTbGgGu7C1UD4dsyanvBNgm2vWD7JzhFrg6RChGPuOLaCEPFD2qrdCY</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ozcan, Koray</creator><creator>Velipasalar, Senem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices</title><author>Ozcan, Koray ; Velipasalar, Senem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-1ac67d5c996c347a0a5df4a5c9027e2a3d8d0413de547508a4689b27837cbda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accelerometers</topic><topic>Cameras</topic><topic>Devices</topic><topic>Fall detection</topic><topic>gradient local binary patterns</topic><topic>histogram of oriented gradients</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Monitoring</topic><topic>Portability</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>smartphone</topic><topic>Tablet computers</topic><topic>wearable camera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozcan, Koray</creatorcontrib><creatorcontrib>Velipasalar, Senem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozcan, Koray</au><au>Velipasalar, Senem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2016-03</date><risdate>2016</risdate><volume>8</volume><issue>1</issue><spage>6</spage><epage>9</epage><pages>6-9</pages><issn>1943-0663</issn><eissn>1943-0671</eissn><coden>ESLMAP</coden><abstract>Robust and reliable detection of falls is crucial especially for elderly activity monitoring systems. In this letter, we present a fall detection system using wearable devices, e.g., smartphones, and tablets, equipped with cameras and accelerometers. Since the portable device is worn by the subject, monitoring is not limited to confined areas, and extends to wherever the subject may travel, as opposed to static sensors installed in certain rooms. Moreover, a camera provides an abundance of information, and the results presented here show that fusing camera and accelerometer data not only increases the detection rate, but also decreases the number of false alarms compared to only accelerometer-based or only camera-based systems. We employ histograms of edge orientations together with the gradient local binary patterns for the camera-based part of fall detection. We compared the performance of the proposed method with that of using original histograms of oriented gradients (HOG) as well as a modified version of HOG. Experimental results show that the proposed method outperforms using original HOG and modified HOG, and provides lower false positive rates for the camera-based detection. Moreover, we have employed an accelerometer-based fall detection method, and fused these two sensor modalities to have a robust fall detection system. Experimental results and trials with actual Samsung Galaxy phones show that the proposed method, combining two different sensor modalities, provides much higher sensitivity, and a significant decrease in the number of false positives during daily activities, compared to accelerometer-only and camera-only methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LES.2015.2487241</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1943-0663 |
ispartof | IEEE embedded systems letters, 2016-03, Vol.8 (1), p.6-9 |
issn | 1943-0663 1943-0671 |
language | eng |
recordid | cdi_ieee_primary_7289390 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Cameras Devices Fall detection gradient local binary patterns histogram of oriented gradients Histograms Image edge detection Monitoring Portability Sensitivity Sensors Smart phones smartphone Tablet computers wearable camera |
title | Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Camera-%20and%20Accelerometer-Based%20Fall%20Detection%20on%20Portable%20Devices&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Ozcan,%20Koray&rft.date=2016-03&rft.volume=8&rft.issue=1&rft.spage=6&rft.epage=9&rft.pages=6-9&rft.issn=1943-0663&rft.eissn=1943-0671&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2015.2487241&rft_dat=%3Cproquest_RIE%3E4047900801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787264834&rft_id=info:pmid/&rft_ieee_id=7289390&rfr_iscdi=true |