Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering
An efficient method of moments (MoM) solution of volume electric field integral equation (V-EFIE) with a kind of higher order basis functions is presented to model scattering from a dielectric object with arbitrary shapes and inhomogenuity. This method is based on both higher order geometrical model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2015-11, Vol.63 (11), p.4964-4975 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4975 |
---|---|
container_issue | 11 |
container_start_page | 4964 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 63 |
creator | Cai, Qiang-Ming Zhao, Yan-Wen Zheng, Yu-Teng Jia, Miao-Miao Zhao, Zhiqin Nie, Zai-Ping |
description | An efficient method of moments (MoM) solution of volume electric field integral equation (V-EFIE) with a kind of higher order basis functions is presented to model scattering from a dielectric object with arbitrary shapes and inhomogenuity. This method is based on both higher order geometrical modeling and higher order current modeling, which is realized using a family of higher order hierarchical vector (HHOV) basis functions to expand the equivalent volume electric currents within curvilinear volume elements. This higher order scheme of MoM results in a significant reduction in meshing density and number of unknowns, leading to a remarkable reduction of memory and CPU time in comparison with conventional low-order MoM, while the accuracy of the solution remains at a comparable level. Numerical results agree with analytical solutions or with simulation results obtained by commercial software, demonstrating the accuracy, convergence, efficiency, flexibility, and adaptability of the new approach. |
doi_str_mv | 10.1109/TAP.2015.2481925 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7275147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7275147</ieee_id><sourcerecordid>3867092661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5244476718efced635e23476423904b916b3cbdc3ff3a711cdc900e0bfc7c3d63</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bzYabtfR0QQEhJMxI_bppRZKFl2oe0eOPi_W4R4mZn38pvJ5BFyD6wHwPKnef-txxnEPS4zyHl8QToQx1nEOYdL0mEMsijnyfc1uXFuE6TMpOyQn8-mardIJ7XHlVUVHe5b5U1T0y_j13RsVmu0dGaXoY4NWmX12ujAPStnHB21tT7SjpaNpf1aVYej3ZT0xWCF2luj6fBvaLZqVaMP-l0r79GaenVLrkpVObw79y75GA3ng3E0nb1OBv1ppHkOPoq5lDJNUsiw1LhMRIxcBENykTO5yCFZCL1YalGWQqUAeqlzxpAtSp1qEfgueTzd3dlm36LzxaZpbfjWFZAKAZlIOA8UO1HaNs5ZLIudNVtlDwWw4hhyEUIujiEX55DDysNpxSDiP57yNAaZil_U4HnG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733183622</pqid></control><display><type>article</type><title>Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Qiang-Ming ; Zhao, Yan-Wen ; Zheng, Yu-Teng ; Jia, Miao-Miao ; Zhao, Zhiqin ; Nie, Zai-Ping</creator><creatorcontrib>Cai, Qiang-Ming ; Zhao, Yan-Wen ; Zheng, Yu-Teng ; Jia, Miao-Miao ; Zhao, Zhiqin ; Nie, Zai-Ping</creatorcontrib><description>An efficient method of moments (MoM) solution of volume electric field integral equation (V-EFIE) with a kind of higher order basis functions is presented to model scattering from a dielectric object with arbitrary shapes and inhomogenuity. This method is based on both higher order geometrical modeling and higher order current modeling, which is realized using a family of higher order hierarchical vector (HHOV) basis functions to expand the equivalent volume electric currents within curvilinear volume elements. This higher order scheme of MoM results in a significant reduction in meshing density and number of unknowns, leading to a remarkable reduction of memory and CPU time in comparison with conventional low-order MoM, while the accuracy of the solution remains at a comparable level. Numerical results agree with analytical solutions or with simulation results obtained by commercial software, demonstrating the accuracy, convergence, efficiency, flexibility, and adaptability of the new approach.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2481925</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dielectrics ; Electric fields ; electromagnetic scattering ; Finite element analysis ; higher-order geometrical modeling ; higher-order hierarchical vector basis functions ; Integral equations ; Mathematical model ; Method of moments ; Polynomials ; Simulation ; Solid modeling ; volume electric field integral equation</subject><ispartof>IEEE transactions on antennas and propagation, 2015-11, Vol.63 (11), p.4964-4975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5244476718efced635e23476423904b916b3cbdc3ff3a711cdc900e0bfc7c3d63</citedby><cites>FETCH-LOGICAL-c291t-5244476718efced635e23476423904b916b3cbdc3ff3a711cdc900e0bfc7c3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7275147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7275147$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cai, Qiang-Ming</creatorcontrib><creatorcontrib>Zhao, Yan-Wen</creatorcontrib><creatorcontrib>Zheng, Yu-Teng</creatorcontrib><creatorcontrib>Jia, Miao-Miao</creatorcontrib><creatorcontrib>Zhao, Zhiqin</creatorcontrib><creatorcontrib>Nie, Zai-Ping</creatorcontrib><title>Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>An efficient method of moments (MoM) solution of volume electric field integral equation (V-EFIE) with a kind of higher order basis functions is presented to model scattering from a dielectric object with arbitrary shapes and inhomogenuity. This method is based on both higher order geometrical modeling and higher order current modeling, which is realized using a family of higher order hierarchical vector (HHOV) basis functions to expand the equivalent volume electric currents within curvilinear volume elements. This higher order scheme of MoM results in a significant reduction in meshing density and number of unknowns, leading to a remarkable reduction of memory and CPU time in comparison with conventional low-order MoM, while the accuracy of the solution remains at a comparable level. Numerical results agree with analytical solutions or with simulation results obtained by commercial software, demonstrating the accuracy, convergence, efficiency, flexibility, and adaptability of the new approach.</description><subject>Dielectrics</subject><subject>Electric fields</subject><subject>electromagnetic scattering</subject><subject>Finite element analysis</subject><subject>higher-order geometrical modeling</subject><subject>higher-order hierarchical vector basis functions</subject><subject>Integral equations</subject><subject>Mathematical model</subject><subject>Method of moments</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>volume electric field integral equation</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbw08bzYabtfR0QQEhJMxI_bppRZKFl2oe0eOPi_W4R4mZn38pvJ5BFyD6wHwPKnef-txxnEPS4zyHl8QToQx1nEOYdL0mEMsijnyfc1uXFuE6TMpOyQn8-mardIJ7XHlVUVHe5b5U1T0y_j13RsVmu0dGaXoY4NWmX12ujAPStnHB21tT7SjpaNpf1aVYej3ZT0xWCF2luj6fBvaLZqVaMP-l0r79GaenVLrkpVObw79y75GA3ng3E0nb1OBv1ppHkOPoq5lDJNUsiw1LhMRIxcBENykTO5yCFZCL1YalGWQqUAeqlzxpAtSp1qEfgueTzd3dlm36LzxaZpbfjWFZAKAZlIOA8UO1HaNs5ZLIudNVtlDwWw4hhyEUIujiEX55DDysNpxSDiP57yNAaZil_U4HnG</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Cai, Qiang-Ming</creator><creator>Zhao, Yan-Wen</creator><creator>Zheng, Yu-Teng</creator><creator>Jia, Miao-Miao</creator><creator>Zhao, Zhiqin</creator><creator>Nie, Zai-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201511</creationdate><title>Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering</title><author>Cai, Qiang-Ming ; Zhao, Yan-Wen ; Zheng, Yu-Teng ; Jia, Miao-Miao ; Zhao, Zhiqin ; Nie, Zai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5244476718efced635e23476423904b916b3cbdc3ff3a711cdc900e0bfc7c3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dielectrics</topic><topic>Electric fields</topic><topic>electromagnetic scattering</topic><topic>Finite element analysis</topic><topic>higher-order geometrical modeling</topic><topic>higher-order hierarchical vector basis functions</topic><topic>Integral equations</topic><topic>Mathematical model</topic><topic>Method of moments</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>volume electric field integral equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Qiang-Ming</creatorcontrib><creatorcontrib>Zhao, Yan-Wen</creatorcontrib><creatorcontrib>Zheng, Yu-Teng</creatorcontrib><creatorcontrib>Jia, Miao-Miao</creatorcontrib><creatorcontrib>Zhao, Zhiqin</creatorcontrib><creatorcontrib>Nie, Zai-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Qiang-Ming</au><au>Zhao, Yan-Wen</au><au>Zheng, Yu-Teng</au><au>Jia, Miao-Miao</au><au>Zhao, Zhiqin</au><au>Nie, Zai-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-11</date><risdate>2015</risdate><volume>63</volume><issue>11</issue><spage>4964</spage><epage>4975</epage><pages>4964-4975</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>An efficient method of moments (MoM) solution of volume electric field integral equation (V-EFIE) with a kind of higher order basis functions is presented to model scattering from a dielectric object with arbitrary shapes and inhomogenuity. This method is based on both higher order geometrical modeling and higher order current modeling, which is realized using a family of higher order hierarchical vector (HHOV) basis functions to expand the equivalent volume electric currents within curvilinear volume elements. This higher order scheme of MoM results in a significant reduction in meshing density and number of unknowns, leading to a remarkable reduction of memory and CPU time in comparison with conventional low-order MoM, while the accuracy of the solution remains at a comparable level. Numerical results agree with analytical solutions or with simulation results obtained by commercial software, demonstrating the accuracy, convergence, efficiency, flexibility, and adaptability of the new approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2015.2481925</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2015-11, Vol.63 (11), p.4964-4975 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_7275147 |
source | IEEE Electronic Library (IEL) |
subjects | Dielectrics Electric fields electromagnetic scattering Finite element analysis higher-order geometrical modeling higher-order hierarchical vector basis functions Integral equations Mathematical model Method of moments Polynomials Simulation Solid modeling volume electric field integral equation |
title | Volume Integral Equation With Higher Order Hierarchical Basis Functions for Analysis of Dielectric Electromagnetic Scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20Integral%20Equation%20With%20Higher%20Order%20Hierarchical%20Basis%20Functions%20for%20Analysis%20of%20Dielectric%20Electromagnetic%20Scattering&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Cai,%20Qiang-Ming&rft.date=2015-11&rft.volume=63&rft.issue=11&rft.spage=4964&rft.epage=4975&rft.pages=4964-4975&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2481925&rft_dat=%3Cproquest_RIE%3E3867092661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733183622&rft_id=info:pmid/&rft_ieee_id=7275147&rfr_iscdi=true |