Music pattern mining for chromosome representation in evolutionary composition
Artificial intelligence (AI) has bloomed in many novel fields such as computational creativity. Recently, research on automatic composition using AI technology, especially evolutionary algorithms, has received considerable promising results. Traditionally, chromosomes are represented as a series of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2152 |
---|---|
container_issue | |
container_start_page | 2145 |
container_title | |
container_volume | |
creator | Chien-Hung Liu Chuan-Kang Ting |
description | Artificial intelligence (AI) has bloomed in many novel fields such as computational creativity. Recently, research on automatic composition using AI technology, especially evolutionary algorithms, has received considerable promising results. Traditionally, chromosomes are represented as a series of numbers to indicate the notes for evolutionary composition. This study attempts to explore the composition styles by mining music patterns of a specific composer. The patterns are used as genes for chromosome representation. Accordingly, the composition styles are considered in generating music by evolutionary algorithms. The fitness function is based on music theory to smooth the progression between phrases. Experimental results show that the patterns mined from compositions can reflect the composer's style and benefit generating satisfactory songs by evolutionary algorithms. |
doi_str_mv | 10.1109/CEC.2015.7257149 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7257149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257149</ieee_id><sourcerecordid>7257149</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-ce8dcaa69fd2c041337157ac1ae53187c642b2c5dbadd34129093b24f06dd213</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0CibawR2LjH0jx9SOOlygqD6nApgt2lWPfgFFjR3aKxN_Tiq5mzuZoNITcAlsCMHPfrtolZ6CWmisN0pyROUhtjJaG63MyAyOhYozXF4fOGlNp3XxckXkp34yBVGBm5O11X4Kjo50mzJEOIYb4SfuUqfvKaUglDUgzjhkLxslOIUUaIsWftNsfweZf6tIwphKOeE0ue7sreHPKBdk8rjbtc7V-f3ppH9ZVAC6mymHjnbW16T13TIIQGpS2DiwqAY12teQdd8p31nshgRtmRMdlz2rvOYgFufvXBkTcjjkMhx3b0w3iD7ePURs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Music pattern mining for chromosome representation in evolutionary composition</title><source>IEEE Electronic Library (IEL)</source><creator>Chien-Hung Liu ; Chuan-Kang Ting</creator><creatorcontrib>Chien-Hung Liu ; Chuan-Kang Ting</creatorcontrib><description>Artificial intelligence (AI) has bloomed in many novel fields such as computational creativity. Recently, research on automatic composition using AI technology, especially evolutionary algorithms, has received considerable promising results. Traditionally, chromosomes are represented as a series of numbers to indicate the notes for evolutionary composition. This study attempts to explore the composition styles by mining music patterns of a specific composer. The patterns are used as genes for chromosome representation. Accordingly, the composition styles are considered in generating music by evolutionary algorithms. The fitness function is based on music theory to smooth the progression between phrases. Experimental results show that the patterns mined from compositions can reflect the composer's style and benefit generating satisfactory songs by evolutionary algorithms.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257149</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic composition ; Biological cells ; creative intelligence ; Data mining ; Evolutionary computation ; genetic algorithm ; Genetic algorithms ; Genetics ; Music ; pattern mining ; Sociology</subject><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2145-2152</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,23909,23910,25118,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257149$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chien-Hung Liu</creatorcontrib><creatorcontrib>Chuan-Kang Ting</creatorcontrib><title>Music pattern mining for chromosome representation in evolutionary composition</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>Artificial intelligence (AI) has bloomed in many novel fields such as computational creativity. Recently, research on automatic composition using AI technology, especially evolutionary algorithms, has received considerable promising results. Traditionally, chromosomes are represented as a series of numbers to indicate the notes for evolutionary composition. This study attempts to explore the composition styles by mining music patterns of a specific composer. The patterns are used as genes for chromosome representation. Accordingly, the composition styles are considered in generating music by evolutionary algorithms. The fitness function is based on music theory to smooth the progression between phrases. Experimental results show that the patterns mined from compositions can reflect the composer's style and benefit generating satisfactory songs by evolutionary algorithms.</description><subject>automatic composition</subject><subject>Biological cells</subject><subject>creative intelligence</subject><subject>Data mining</subject><subject>Evolutionary computation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Music</subject><subject>pattern mining</subject><subject>Sociology</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURA0CibawR2LjH0jx9SOOlygqD6nApgt2lWPfgFFjR3aKxN_Tiq5mzuZoNITcAlsCMHPfrtolZ6CWmisN0pyROUhtjJaG63MyAyOhYozXF4fOGlNp3XxckXkp34yBVGBm5O11X4Kjo50mzJEOIYb4SfuUqfvKaUglDUgzjhkLxslOIUUaIsWftNsfweZf6tIwphKOeE0ue7sreHPKBdk8rjbtc7V-f3ppH9ZVAC6mymHjnbW16T13TIIQGpS2DiwqAY12teQdd8p31nshgRtmRMdlz2rvOYgFufvXBkTcjjkMhx3b0w3iD7ePURs</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Chien-Hung Liu</creator><creator>Chuan-Kang Ting</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Music pattern mining for chromosome representation in evolutionary composition</title><author>Chien-Hung Liu ; Chuan-Kang Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-ce8dcaa69fd2c041337157ac1ae53187c642b2c5dbadd34129093b24f06dd213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>automatic composition</topic><topic>Biological cells</topic><topic>creative intelligence</topic><topic>Data mining</topic><topic>Evolutionary computation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Music</topic><topic>pattern mining</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chien-Hung Liu</creatorcontrib><creatorcontrib>Chuan-Kang Ting</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chien-Hung Liu</au><au>Chuan-Kang Ting</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Music pattern mining for chromosome representation in evolutionary composition</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>2145</spage><epage>2152</epage><pages>2145-2152</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>Artificial intelligence (AI) has bloomed in many novel fields such as computational creativity. Recently, research on automatic composition using AI technology, especially evolutionary algorithms, has received considerable promising results. Traditionally, chromosomes are represented as a series of numbers to indicate the notes for evolutionary composition. This study attempts to explore the composition styles by mining music patterns of a specific composer. The patterns are used as genes for chromosome representation. Accordingly, the composition styles are considered in generating music by evolutionary algorithms. The fitness function is based on music theory to smooth the progression between phrases. Experimental results show that the patterns mined from compositions can reflect the composer's style and benefit generating satisfactory songs by evolutionary algorithms.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257149</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.2145-2152 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_7257149 |
source | IEEE Electronic Library (IEL) |
subjects | automatic composition Biological cells creative intelligence Data mining Evolutionary computation genetic algorithm Genetic algorithms Genetics Music pattern mining Sociology |
title | Music pattern mining for chromosome representation in evolutionary composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Music%20pattern%20mining%20for%20chromosome%20representation%20in%20evolutionary%20composition&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Chien-Hung%20Liu&rft.date=2015-05-01&rft.spage=2145&rft.epage=2152&rft.pages=2145-2152&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257149&rft_dat=%3Cieee_RIE%3E7257149%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257149&rfr_iscdi=true |