Incremental non-dominated sorting with O(N) insertion for the two-dimensional case

We propose a new algorithm for incremental nondominated sorting of two-dimensional points. The data structure which stores non-dominating layers is based on a tree of Cartesian trees. If there are N points in M layers, the running time for of an insertion is O(M(1 + log(N=M)) + log M log(N= log M)),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yakupov, Ilya, Buzdalov, Maxim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1860
container_issue
container_start_page 1853
container_title
container_volume
creator Yakupov, Ilya
Buzdalov, Maxim
description We propose a new algorithm for incremental nondominated sorting of two-dimensional points. The data structure which stores non-dominating layers is based on a tree of Cartesian trees. If there are N points in M layers, the running time for of an insertion is O(M(1 + log(N=M)) + log M log(N= log M)), which is O(N) in the worst case. This algorithm can be a basic building block for efficient implementations of steady-state multiobjective algorithms such as NSGA-II.
doi_str_mv 10.1109/CEC.2015.7257112
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7257112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7257112</ieee_id><sourcerecordid>7257112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-510bad5885497587188c9195d091f6ff0df94a92d7aef7d9a213e1ed068159873</originalsourceid><addsrcrecordid>eNotkEFLAzEUhKMo2Fbvgpcc9ZD6XrrZ5B1lqVooFkTBW4mbxEa6WdkEiv_eBXua4YP5DsPYNcIcEei-WTZzCajmWiqNKE_YFCtNpCuS-pRNkCoUALI-GzsYElqbjws2zfkbACuFNGGvq9QOvvOp2D1PfRKu72KyxTue-6HE9MUPsez45vbljseU_cj6xEM_8LLzvBx64eI4zyMdDa3N_pKdB7vP_uqYM_b-uHxrnsV687RqHtaiRQ1FKIRP65QxqiKtjEZjWkJSDghDHQK4QJUl6bT1QTuyEhcevYPaoCKjFzN28--N3vvtzxA7O_xuj18s_gAsnlBt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incremental non-dominated sorting with O(N) insertion for the two-dimensional case</title><source>IEEE Electronic Library (IEL)</source><creator>Yakupov, Ilya ; Buzdalov, Maxim</creator><creatorcontrib>Yakupov, Ilya ; Buzdalov, Maxim</creatorcontrib><description>We propose a new algorithm for incremental nondominated sorting of two-dimensional points. The data structure which stores non-dominating layers is based on a tree of Cartesian trees. If there are N points in M layers, the running time for of an insertion is O(M(1 + log(N=M)) + log M log(N= log M)), which is O(N) in the worst case. This algorithm can be a basic building block for efficient implementations of steady-state multiobjective algorithms such as NSGA-II.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1479974927</identifier><identifier>EISBN: 9781479974924</identifier><identifier>DOI: 10.1109/CEC.2015.7257112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Complexity theory ; Containers ; Data structures ; Estimation ; Sorting ; Vegetation</subject><ispartof>2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1853-1860</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c170t-510bad5885497587188c9195d091f6ff0df94a92d7aef7d9a213e1ed068159873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7257112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,23929,23930,25139,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7257112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yakupov, Ilya</creatorcontrib><creatorcontrib>Buzdalov, Maxim</creatorcontrib><title>Incremental non-dominated sorting with O(N) insertion for the two-dimensional case</title><title>2015 IEEE Congress on Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>We propose a new algorithm for incremental nondominated sorting of two-dimensional points. The data structure which stores non-dominating layers is based on a tree of Cartesian trees. If there are N points in M layers, the running time for of an insertion is O(M(1 + log(N=M)) + log M log(N= log M)), which is O(N) in the worst case. This algorithm can be a basic building block for efficient implementations of steady-state multiobjective algorithms such as NSGA-II.</description><subject>Algorithm design and analysis</subject><subject>Complexity theory</subject><subject>Containers</subject><subject>Data structures</subject><subject>Estimation</subject><subject>Sorting</subject><subject>Vegetation</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479974927</isbn><isbn>9781479974924</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEFLAzEUhKMo2Fbvgpcc9ZD6XrrZ5B1lqVooFkTBW4mbxEa6WdkEiv_eBXua4YP5DsPYNcIcEei-WTZzCajmWiqNKE_YFCtNpCuS-pRNkCoUALI-GzsYElqbjws2zfkbACuFNGGvq9QOvvOp2D1PfRKu72KyxTue-6HE9MUPsez45vbljseU_cj6xEM_8LLzvBx64eI4zyMdDa3N_pKdB7vP_uqYM_b-uHxrnsV687RqHtaiRQ1FKIRP65QxqiKtjEZjWkJSDghDHQK4QJUl6bT1QTuyEhcevYPaoCKjFzN28--N3vvtzxA7O_xuj18s_gAsnlBt</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Yakupov, Ilya</creator><creator>Buzdalov, Maxim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20150501</creationdate><title>Incremental non-dominated sorting with O(N) insertion for the two-dimensional case</title><author>Yakupov, Ilya ; Buzdalov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-510bad5885497587188c9195d091f6ff0df94a92d7aef7d9a213e1ed068159873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Complexity theory</topic><topic>Containers</topic><topic>Data structures</topic><topic>Estimation</topic><topic>Sorting</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakupov, Ilya</creatorcontrib><creatorcontrib>Buzdalov, Maxim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yakupov, Ilya</au><au>Buzdalov, Maxim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incremental non-dominated sorting with O(N) insertion for the two-dimensional case</atitle><btitle>2015 IEEE Congress on Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2015-05-01</date><risdate>2015</risdate><spage>1853</spage><epage>1860</epage><pages>1853-1860</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><eisbn>1479974927</eisbn><eisbn>9781479974924</eisbn><abstract>We propose a new algorithm for incremental nondominated sorting of two-dimensional points. The data structure which stores non-dominating layers is based on a tree of Cartesian trees. If there are N points in M layers, the running time for of an insertion is O(M(1 + log(N=M)) + log M log(N= log M)), which is O(N) in the worst case. This algorithm can be a basic building block for efficient implementations of steady-state multiobjective algorithms such as NSGA-II.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2015.7257112</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, p.1853-1860
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_7257112
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Complexity theory
Containers
Data structures
Estimation
Sorting
Vegetation
title Incremental non-dominated sorting with O(N) insertion for the two-dimensional case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incremental%20non-dominated%20sorting%20with%20O(N)%20insertion%20for%20the%20two-dimensional%20case&rft.btitle=2015%20IEEE%20Congress%20on%20Evolutionary%20Computation%20(CEC)&rft.au=Yakupov,%20Ilya&rft.date=2015-05-01&rft.spage=1853&rft.epage=1860&rft.pages=1853-1860&rft.issn=1089-778X&rft.eissn=1941-0026&rft_id=info:doi/10.1109/CEC.2015.7257112&rft_dat=%3Cieee_RIE%3E7257112%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479974927&rft.eisbn_list=9781479974924&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7257112&rfr_iscdi=true