Covariant-conics decomposition of quartics for 2D object recognition and affine alignment

This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarel, J.-P., Wolovich, W.A., Cooper, D.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822 vol.2
container_issue
container_start_page 818
container_title
container_volume 2
creator Tarel, J.-P.
Wolovich, W.A.
Cooper, D.B.
description This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets.
doi_str_mv 10.1109/ICIP.1998.723684
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_723684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>723684</ieee_id><sourcerecordid>723684</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-4bb91b56880b7c8acc0788f763606581c09c1b3d729be577abb85f2c3dbfcc153</originalsourceid><addsrcrecordid>eNotj01LxDAYhAMiqOvexVP-QGvepG2So9SPLSzoQQ-eluRtsmTZJmtaBf-9lTqXOczDMEPIDbASgOm7ru1eS9BalZKLRlVn5IopUI1SHOCCrMfxwGYpLqWWl-SjTd8mBxOnAlMMONLeYRpOaQxTSJEmTz-_TJ7-Ep8y5Q802YPDieaZ28eFMrGnxvsQHTXHsI-Di9M1OffmOLr1v6_I-9PjW7spti_PXXu_LQKwaioqazXYet7HrERlEJlUystGNKypFSDTCFb0kmvraimNtar2HEVvPSLUYkVul97gnNudchhM_tkt58UvbxlREw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Covariant-conics decomposition of quartics for 2D object recognition and affine alignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tarel, J.-P. ; Wolovich, W.A. ; Cooper, D.B.</creator><creatorcontrib>Tarel, J.-P. ; Wolovich, W.A. ; Cooper, D.B.</creatorcontrib><description>This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets.</description><identifier>ISBN: 0818688211</identifier><identifier>ISBN: 9780818688218</identifier><identifier>DOI: 10.1109/ICIP.1998.723684</identifier><language>eng</language><publisher>IEEE</publisher><subject>Curve fitting ; Linear systems ; Noise generators ; Noise robustness ; Object recognition ; Polynomials ; Shape ; Tellurium</subject><ispartof>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, Vol.2, p.818-822 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/723684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/723684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tarel, J.-P.</creatorcontrib><creatorcontrib>Wolovich, W.A.</creatorcontrib><creatorcontrib>Cooper, D.B.</creatorcontrib><title>Covariant-conics decomposition of quartics for 2D object recognition and affine alignment</title><title>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</title><addtitle>ICIP</addtitle><description>This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets.</description><subject>Curve fitting</subject><subject>Linear systems</subject><subject>Noise generators</subject><subject>Noise robustness</subject><subject>Object recognition</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Tellurium</subject><isbn>0818688211</isbn><isbn>9780818688218</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LxDAYhAMiqOvexVP-QGvepG2So9SPLSzoQQ-eluRtsmTZJmtaBf-9lTqXOczDMEPIDbASgOm7ru1eS9BalZKLRlVn5IopUI1SHOCCrMfxwGYpLqWWl-SjTd8mBxOnAlMMONLeYRpOaQxTSJEmTz-_TJ7-Ep8y5Q802YPDieaZ28eFMrGnxvsQHTXHsI-Di9M1OffmOLr1v6_I-9PjW7spti_PXXu_LQKwaioqazXYet7HrERlEJlUystGNKypFSDTCFb0kmvraimNtar2HEVvPSLUYkVul97gnNudchhM_tkt58UvbxlREw</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Tarel, J.-P.</creator><creator>Wolovich, W.A.</creator><creator>Cooper, D.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Covariant-conics decomposition of quartics for 2D object recognition and affine alignment</title><author>Tarel, J.-P. ; Wolovich, W.A. ; Cooper, D.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-4bb91b56880b7c8acc0788f763606581c09c1b3d729be577abb85f2c3dbfcc153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Curve fitting</topic><topic>Linear systems</topic><topic>Noise generators</topic><topic>Noise robustness</topic><topic>Object recognition</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Tellurium</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarel, J.-P.</creatorcontrib><creatorcontrib>Wolovich, W.A.</creatorcontrib><creatorcontrib>Cooper, D.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarel, J.-P.</au><au>Wolovich, W.A.</au><au>Cooper, D.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Covariant-conics decomposition of quartics for 2D object recognition and affine alignment</atitle><btitle>Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)</btitle><stitle>ICIP</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>818</spage><epage>822 vol.2</epage><pages>818-822 vol.2</pages><isbn>0818688211</isbn><isbn>9780818688218</isbn><abstract>This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1998.723684</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818688211
ispartof Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998, Vol.2, p.818-822 vol.2
issn
language eng
recordid cdi_ieee_primary_723684
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Curve fitting
Linear systems
Noise generators
Noise robustness
Object recognition
Polynomials
Shape
Tellurium
title Covariant-conics decomposition of quartics for 2D object recognition and affine alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Covariant-conics%20decomposition%20of%20quartics%20for%202D%20object%20recognition%20and%20affine%20alignment&rft.btitle=Proceedings%201998%20International%20Conference%20on%20Image%20Processing.%20ICIP98%20(Cat.%20No.98CB36269)&rft.au=Tarel,%20J.-P.&rft.date=1998&rft.volume=2&rft.spage=818&rft.epage=822%20vol.2&rft.pages=818-822%20vol.2&rft.isbn=0818688211&rft.isbn_list=9780818688218&rft_id=info:doi/10.1109/ICIP.1998.723684&rft_dat=%3Cieee_6IE%3E723684%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=723684&rfr_iscdi=true