Covariant-conics decomposition of quartics for 2D object recognition and affine alignment

This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarel, J.-P., Wolovich, W.A., Cooper, D.B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets.
DOI:10.1109/ICIP.1998.723684