Covariant-conics decomposition of quartics for 2D object recognition and affine alignment
This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper outlines a geometric parameterization of 2D curves where the parameterization is in terms of geometric invariants and terms that determine an intrinsic coordinate system. Thus, we present a new approach to handle two fundamental problems: single-computation alignment and recognition of 2D shapes under affine transformations. The approach is model-based, and every shape is first fit by an implicit fourth degree (quartic) polynomial. Based on the decomposition of this equation into three covariant conics, we are able to define a unique intrinsic reference system that incorporates usable alignment information contained in the implicit polynomial representation, a complete set of geometric invariants, and thus an associated canonical form for a quartic. This representation permits shape recognition based on 8 affine invariants. This is illustrated in experiments with real data sets. |
---|---|
DOI: | 10.1109/ICIP.1998.723684 |