Signal Recovery With Certain Involved Convex Data-Fidelity Constraints
This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2015-11, Vol.63 (22), p.6149-6163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6163 |
---|---|
container_issue | 22 |
container_start_page | 6149 |
container_title | IEEE transactions on signal processing |
container_volume | 63 |
creator | Ono, Shunsuke Yamada, Isao |
description | This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples. |
doi_str_mv | 10.1109/TSP.2015.2472365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7219470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7219470</ieee_id><sourcerecordid>1825556257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</originalsourceid><addsrcrecordid>eNpdkM1LwzAUwIMoOKd3wUvBi5fOfDbNUarTwUBxE72FrH3VjK6dSVbcf2_GhgdP7_H4va8fQpcEjwjB6nY-exlRTMSIcklZJo7QgChOUsxldhxzLFgqcvlxis68X2JMOFfZAI1n9rM1TfIKZdeD2ybvNnwlBbhgbJtM2r5reqiSomt7-EnuTTDp2FbQ2LDdFX1wkQv-HJ3UpvFwcYhD9DZ-mBdP6fT5cVLcTdOSZXlI1QKzkhMhsCJCGVbVwlCeVwwyRRnFeCHqmtZZSQThuTGcAKMLAJCy5jxnbIhu9nPXrvvegA96ZX0JTWNa6DZek5wKITIqZESv_6HLbuPir5GSVFHFRdw5RHhPla7z3kGt186ujNtqgvVOrI5i9U6sPoiNLVf7FhsP-8MljbolZr_esHKL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729294592</pqid></control><display><type>article</type><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Ono, Shunsuke ; Yamada, Isao</creator><creatorcontrib>Ono, Shunsuke ; Yamada, Isao</creatorcontrib><description>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2472365</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational geometry ; Constrained convex optimization ; Contamination ; Convex analysis ; Convex functions ; Convexity ; data-fidelity constraint ; fixed point set characterization ; hybrid steepest descent method ; Inversions ; Level set ; Measurement ; Noise ; Normal distribution ; Optimization ; Recovery ; Signal processing algorithms ; signal recovery</subject><ispartof>IEEE transactions on signal processing, 2015-11, Vol.63 (22), p.6149-6163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</citedby><cites>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7219470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7219470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Yamada, Isao</creatorcontrib><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Constrained convex optimization</subject><subject>Contamination</subject><subject>Convex analysis</subject><subject>Convex functions</subject><subject>Convexity</subject><subject>data-fidelity constraint</subject><subject>fixed point set characterization</subject><subject>hybrid steepest descent method</subject><subject>Inversions</subject><subject>Level set</subject><subject>Measurement</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Signal processing algorithms</subject><subject>signal recovery</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LwzAUwIMoOKd3wUvBi5fOfDbNUarTwUBxE72FrH3VjK6dSVbcf2_GhgdP7_H4va8fQpcEjwjB6nY-exlRTMSIcklZJo7QgChOUsxldhxzLFgqcvlxis68X2JMOFfZAI1n9rM1TfIKZdeD2ybvNnwlBbhgbJtM2r5reqiSomt7-EnuTTDp2FbQ2LDdFX1wkQv-HJ3UpvFwcYhD9DZ-mBdP6fT5cVLcTdOSZXlI1QKzkhMhsCJCGVbVwlCeVwwyRRnFeCHqmtZZSQThuTGcAKMLAJCy5jxnbIhu9nPXrvvegA96ZX0JTWNa6DZek5wKITIqZESv_6HLbuPir5GSVFHFRdw5RHhPla7z3kGt186ujNtqgvVOrI5i9U6sPoiNLVf7FhsP-8MljbolZr_esHKL</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ono, Shunsuke</creator><creator>Yamada, Isao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151101</creationdate><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><author>Ono, Shunsuke ; Yamada, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Constrained convex optimization</topic><topic>Contamination</topic><topic>Convex analysis</topic><topic>Convex functions</topic><topic>Convexity</topic><topic>data-fidelity constraint</topic><topic>fixed point set characterization</topic><topic>hybrid steepest descent method</topic><topic>Inversions</topic><topic>Level set</topic><topic>Measurement</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Signal processing algorithms</topic><topic>signal recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Yamada, Isao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ono, Shunsuke</au><au>Yamada, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>63</volume><issue>22</issue><spage>6149</spage><epage>6163</epage><pages>6149-6163</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2472365</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2015-11, Vol.63 (22), p.6149-6163 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_7219470 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational geometry Constrained convex optimization Contamination Convex analysis Convex functions Convexity data-fidelity constraint fixed point set characterization hybrid steepest descent method Inversions Level set Measurement Noise Normal distribution Optimization Recovery Signal processing algorithms signal recovery |
title | Signal Recovery With Certain Involved Convex Data-Fidelity Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Recovery%20With%20Certain%20Involved%20Convex%20Data-Fidelity%20Constraints&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ono,%20Shunsuke&rft.date=2015-11-01&rft.volume=63&rft.issue=22&rft.spage=6149&rft.epage=6163&rft.pages=6149-6163&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2472365&rft_dat=%3Cproquest_RIE%3E1825556257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729294592&rft_id=info:pmid/&rft_ieee_id=7219470&rfr_iscdi=true |