Signal Recovery With Certain Involved Convex Data-Fidelity Constraints

This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-11, Vol.63 (22), p.6149-6163
Hauptverfasser: Ono, Shunsuke, Yamada, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6163
container_issue 22
container_start_page 6149
container_title IEEE transactions on signal processing
container_volume 63
creator Ono, Shunsuke
Yamada, Isao
description This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.
doi_str_mv 10.1109/TSP.2015.2472365
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7219470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7219470</ieee_id><sourcerecordid>1825556257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</originalsourceid><addsrcrecordid>eNpdkM1LwzAUwIMoOKd3wUvBi5fOfDbNUarTwUBxE72FrH3VjK6dSVbcf2_GhgdP7_H4va8fQpcEjwjB6nY-exlRTMSIcklZJo7QgChOUsxldhxzLFgqcvlxis68X2JMOFfZAI1n9rM1TfIKZdeD2ybvNnwlBbhgbJtM2r5reqiSomt7-EnuTTDp2FbQ2LDdFX1wkQv-HJ3UpvFwcYhD9DZ-mBdP6fT5cVLcTdOSZXlI1QKzkhMhsCJCGVbVwlCeVwwyRRnFeCHqmtZZSQThuTGcAKMLAJCy5jxnbIhu9nPXrvvegA96ZX0JTWNa6DZek5wKITIqZESv_6HLbuPir5GSVFHFRdw5RHhPla7z3kGt186ujNtqgvVOrI5i9U6sPoiNLVf7FhsP-8MljbolZr_esHKL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729294592</pqid></control><display><type>article</type><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Ono, Shunsuke ; Yamada, Isao</creator><creatorcontrib>Ono, Shunsuke ; Yamada, Isao</creatorcontrib><description>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2472365</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational geometry ; Constrained convex optimization ; Contamination ; Convex analysis ; Convex functions ; Convexity ; data-fidelity constraint ; fixed point set characterization ; hybrid steepest descent method ; Inversions ; Level set ; Measurement ; Noise ; Normal distribution ; Optimization ; Recovery ; Signal processing algorithms ; signal recovery</subject><ispartof>IEEE transactions on signal processing, 2015-11, Vol.63 (22), p.6149-6163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</citedby><cites>FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7219470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7219470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Yamada, Isao</creatorcontrib><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Constrained convex optimization</subject><subject>Contamination</subject><subject>Convex analysis</subject><subject>Convex functions</subject><subject>Convexity</subject><subject>data-fidelity constraint</subject><subject>fixed point set characterization</subject><subject>hybrid steepest descent method</subject><subject>Inversions</subject><subject>Level set</subject><subject>Measurement</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Signal processing algorithms</subject><subject>signal recovery</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LwzAUwIMoOKd3wUvBi5fOfDbNUarTwUBxE72FrH3VjK6dSVbcf2_GhgdP7_H4va8fQpcEjwjB6nY-exlRTMSIcklZJo7QgChOUsxldhxzLFgqcvlxis68X2JMOFfZAI1n9rM1TfIKZdeD2ybvNnwlBbhgbJtM2r5reqiSomt7-EnuTTDp2FbQ2LDdFX1wkQv-HJ3UpvFwcYhD9DZ-mBdP6fT5cVLcTdOSZXlI1QKzkhMhsCJCGVbVwlCeVwwyRRnFeCHqmtZZSQThuTGcAKMLAJCy5jxnbIhu9nPXrvvegA96ZX0JTWNa6DZek5wKITIqZESv_6HLbuPir5GSVFHFRdw5RHhPla7z3kGt186ujNtqgvVOrI5i9U6sPoiNLVf7FhsP-8MljbolZr_esHKL</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ono, Shunsuke</creator><creator>Yamada, Isao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151101</creationdate><title>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</title><author>Ono, Shunsuke ; Yamada, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9b03c415509159a3df5a248d3e6923200b5ff2f6c15148aa41e32beee77f44833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Constrained convex optimization</topic><topic>Contamination</topic><topic>Convex analysis</topic><topic>Convex functions</topic><topic>Convexity</topic><topic>data-fidelity constraint</topic><topic>fixed point set characterization</topic><topic>hybrid steepest descent method</topic><topic>Inversions</topic><topic>Level set</topic><topic>Measurement</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Signal processing algorithms</topic><topic>signal recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Yamada, Isao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ono, Shunsuke</au><au>Yamada, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Recovery With Certain Involved Convex Data-Fidelity Constraints</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>63</volume><issue>22</issue><spage>6149</spage><epage>6163</epage><pages>6149-6163</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper proposes an optimization framework that can efficiently deal with convex data-fidelity constraints onto which the metric projections are difficult to compute. Although such an involved data-fidelity constraint is expected to play an important role in signal recovery under non-Gaussian noise contamination, the said difficulty precludes existing algorithms from solving convex optimization problems with the constraint. To resolve this dilemma, we introduce a fixed point set characterization of involved data-fidelity constraints based on a certain computable quasi-nonexpansive mapping. This characterization enables us to mobilize the hybrid steepest descent method to solve convex optimization problems with such a constraint. The proposed framework can handle a variety of involved data-fidelity constraints in a unified manner, without geometric approximation to them. In addition, it requires no computationally expensive procedure such as operator inversion and inner loop. As applications of the proposed framework, we provide image restoration under several types of non-Gaussian noise contamination with illustrative examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2472365</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-11, Vol.63 (22), p.6149-6163
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_7219470
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational geometry
Constrained convex optimization
Contamination
Convex analysis
Convex functions
Convexity
data-fidelity constraint
fixed point set characterization
hybrid steepest descent method
Inversions
Level set
Measurement
Noise
Normal distribution
Optimization
Recovery
Signal processing algorithms
signal recovery
title Signal Recovery With Certain Involved Convex Data-Fidelity Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Recovery%20With%20Certain%20Involved%20Convex%20Data-Fidelity%20Constraints&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ono,%20Shunsuke&rft.date=2015-11-01&rft.volume=63&rft.issue=22&rft.spage=6149&rft.epage=6163&rft.pages=6149-6163&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2472365&rft_dat=%3Cproquest_RIE%3E1825556257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729294592&rft_id=info:pmid/&rft_ieee_id=7219470&rfr_iscdi=true