Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids

In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2017-01, Vol.8 (1), p.209-218
Hauptverfasser: Thanos, Aristotelis E., Bastani, Mehrad, Celik, Nurcin, Chun-Hung Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 1
container_start_page 209
container_title IEEE transactions on smart grid
container_volume 8
creator Thanos, Aristotelis E.
Bastani, Mehrad
Celik, Nurcin
Chun-Hung Chen
description In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.
doi_str_mv 10.1109/TSG.2015.2464709
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7210221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7210221</ieee_id><sourcerecordid>1856381269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiQS5m3hp4nnY127teiQgaILxAJybbutMka2z6zT895ZAeJf3PXy_78cHoUcgUwAiX7ab1ZQSyKY05akg8gaNQKYyYYTD7VVn7B5N-n5PYjHGOJUjtFscW93YEi900Hjh7a9p8azSXYgKb2wzHHSwrsVLrxvz5_w3rp3HsyG4RgdT4blrg3cHbFv8YUvvvryt-gd0V-tDbyaXPka75et2_pasP1fv89k6KamEkMiiqEWVZwUTQmguKWMZ05xDTiRIUwmZFlDqoqgIq2SeF_HHEgTNBKGCipSN0fN5bufdz2D6oPZu8G1cqSDPOMuBchld5OyK5_W9N7XqvG20Pyog6sRPRX7qxE9d-MXI0zlijTFXu6BAKAX2D_sEaio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856381269</pqid></control><display><type>article</type><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><source>IEEE Electronic Library (IEL)</source><creator>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</creator><creatorcontrib>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</creatorcontrib><description>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2015.2464709</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Agent-based simulation ; Algorithm design and analysis ; Algorithms ; Automatic control ; autonomous control ; Buildings ; Computational modeling ; Computer simulation ; Control design ; Data models ; Decisions ; Distributed generation ; Fault detection ; Liabilities ; microgrids (MGs) ; multiobjective optimization ; Multiple objective analysis ; Operating costs ; Optimization ; real-time simulation ; Resource allocation ; Sensors ; Simulation</subject><ispartof>IEEE transactions on smart grid, 2017-01, Vol.8 (1), p.209-218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</citedby><cites>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7210221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7210221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thanos, Aristotelis E.</creatorcontrib><creatorcontrib>Bastani, Mehrad</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</description><subject>Adaptive control</subject><subject>Agent-based simulation</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automatic control</subject><subject>autonomous control</subject><subject>Buildings</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Control design</subject><subject>Data models</subject><subject>Decisions</subject><subject>Distributed generation</subject><subject>Fault detection</subject><subject>Liabilities</subject><subject>microgrids (MGs)</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>real-time simulation</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Simulation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAUxxujiQS5m3hp4nnY127teiQgaILxAJybbutMka2z6zT895ZAeJf3PXy_78cHoUcgUwAiX7ab1ZQSyKY05akg8gaNQKYyYYTD7VVn7B5N-n5PYjHGOJUjtFscW93YEi900Hjh7a9p8azSXYgKb2wzHHSwrsVLrxvz5_w3rp3HsyG4RgdT4blrg3cHbFv8YUvvvryt-gd0V-tDbyaXPka75et2_pasP1fv89k6KamEkMiiqEWVZwUTQmguKWMZ05xDTiRIUwmZFlDqoqgIq2SeF_HHEgTNBKGCipSN0fN5bufdz2D6oPZu8G1cqSDPOMuBchld5OyK5_W9N7XqvG20Pyog6sRPRX7qxE9d-MXI0zlijTFXu6BAKAX2D_sEaio</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Thanos, Aristotelis E.</creator><creator>Bastani, Mehrad</creator><creator>Celik, Nurcin</creator><creator>Chun-Hung Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><author>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Agent-based simulation</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automatic control</topic><topic>autonomous control</topic><topic>Buildings</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Control design</topic><topic>Data models</topic><topic>Decisions</topic><topic>Distributed generation</topic><topic>Fault detection</topic><topic>Liabilities</topic><topic>microgrids (MGs)</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>real-time simulation</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanos, Aristotelis E.</creatorcontrib><creatorcontrib>Bastani, Mehrad</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thanos, Aristotelis E.</au><au>Bastani, Mehrad</au><au>Celik, Nurcin</au><au>Chun-Hung Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>209</spage><epage>218</epage><pages>209-218</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2015.2464709</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2017-01, Vol.8 (1), p.209-218
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_7210221
source IEEE Electronic Library (IEL)
subjects Adaptive control
Agent-based simulation
Algorithm design and analysis
Algorithms
Automatic control
autonomous control
Buildings
Computational modeling
Computer simulation
Control design
Data models
Decisions
Distributed generation
Fault detection
Liabilities
microgrids (MGs)
multiobjective optimization
Multiple objective analysis
Operating costs
Optimization
real-time simulation
Resource allocation
Sensors
Simulation
title Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Data%20Driven%20Adaptive%20Simulation%20Framework%20for%20Automated%20Control%20in%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Thanos,%20Aristotelis%20E.&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=209&rft.epage=218&rft.pages=209-218&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2015.2464709&rft_dat=%3Cproquest_RIE%3E1856381269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856381269&rft_id=info:pmid/&rft_ieee_id=7210221&rfr_iscdi=true