Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids
In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2017-01, Vol.8 (1), p.209-218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 1 |
container_start_page | 209 |
container_title | IEEE transactions on smart grid |
container_volume | 8 |
creator | Thanos, Aristotelis E. Bastani, Mehrad Celik, Nurcin Chun-Hung Chen |
description | In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem. |
doi_str_mv | 10.1109/TSG.2015.2464709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7210221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7210221</ieee_id><sourcerecordid>1856381269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiQS5m3hp4nnY127teiQgaILxAJybbutMka2z6zT895ZAeJf3PXy_78cHoUcgUwAiX7ab1ZQSyKY05akg8gaNQKYyYYTD7VVn7B5N-n5PYjHGOJUjtFscW93YEi900Hjh7a9p8azSXYgKb2wzHHSwrsVLrxvz5_w3rp3HsyG4RgdT4blrg3cHbFv8YUvvvryt-gd0V-tDbyaXPka75et2_pasP1fv89k6KamEkMiiqEWVZwUTQmguKWMZ05xDTiRIUwmZFlDqoqgIq2SeF_HHEgTNBKGCipSN0fN5bufdz2D6oPZu8G1cqSDPOMuBchld5OyK5_W9N7XqvG20Pyog6sRPRX7qxE9d-MXI0zlijTFXu6BAKAX2D_sEaio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856381269</pqid></control><display><type>article</type><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><source>IEEE Electronic Library (IEL)</source><creator>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</creator><creatorcontrib>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</creatorcontrib><description>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2015.2464709</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Agent-based simulation ; Algorithm design and analysis ; Algorithms ; Automatic control ; autonomous control ; Buildings ; Computational modeling ; Computer simulation ; Control design ; Data models ; Decisions ; Distributed generation ; Fault detection ; Liabilities ; microgrids (MGs) ; multiobjective optimization ; Multiple objective analysis ; Operating costs ; Optimization ; real-time simulation ; Resource allocation ; Sensors ; Simulation</subject><ispartof>IEEE transactions on smart grid, 2017-01, Vol.8 (1), p.209-218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</citedby><cites>FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7210221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7210221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thanos, Aristotelis E.</creatorcontrib><creatorcontrib>Bastani, Mehrad</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</description><subject>Adaptive control</subject><subject>Agent-based simulation</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automatic control</subject><subject>autonomous control</subject><subject>Buildings</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Control design</subject><subject>Data models</subject><subject>Decisions</subject><subject>Distributed generation</subject><subject>Fault detection</subject><subject>Liabilities</subject><subject>microgrids (MGs)</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>real-time simulation</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Simulation</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9PwjAUxxujiQS5m3hp4nnY127teiQgaILxAJybbutMka2z6zT895ZAeJf3PXy_78cHoUcgUwAiX7ab1ZQSyKY05akg8gaNQKYyYYTD7VVn7B5N-n5PYjHGOJUjtFscW93YEi900Hjh7a9p8azSXYgKb2wzHHSwrsVLrxvz5_w3rp3HsyG4RgdT4blrg3cHbFv8YUvvvryt-gd0V-tDbyaXPka75et2_pasP1fv89k6KamEkMiiqEWVZwUTQmguKWMZ05xDTiRIUwmZFlDqoqgIq2SeF_HHEgTNBKGCipSN0fN5bufdz2D6oPZu8G1cqSDPOMuBchld5OyK5_W9N7XqvG20Pyog6sRPRX7qxE9d-MXI0zlijTFXu6BAKAX2D_sEaio</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Thanos, Aristotelis E.</creator><creator>Bastani, Mehrad</creator><creator>Celik, Nurcin</creator><creator>Chun-Hung Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</title><author>Thanos, Aristotelis E. ; Bastani, Mehrad ; Celik, Nurcin ; Chun-Hung Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9bbf7d85b3777a6923353a66180919ed794b1cabbd03d988b201c172570272743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Agent-based simulation</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automatic control</topic><topic>autonomous control</topic><topic>Buildings</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Control design</topic><topic>Data models</topic><topic>Decisions</topic><topic>Distributed generation</topic><topic>Fault detection</topic><topic>Liabilities</topic><topic>microgrids (MGs)</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>real-time simulation</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanos, Aristotelis E.</creatorcontrib><creatorcontrib>Bastani, Mehrad</creatorcontrib><creatorcontrib>Celik, Nurcin</creatorcontrib><creatorcontrib>Chun-Hung Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thanos, Aristotelis E.</au><au>Bastani, Mehrad</au><au>Celik, Nurcin</au><au>Chun-Hung Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>209</spage><epage>218</epage><pages>209-218</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In this paper, we introduce a novel dynamic data driven adaptive simulation framework for the operation and control of microgrids (MGs) that significantly accelerates the real-time computation of the resource allocation, and controls decisions to optimize the operational cost, energy surety, as well as emissions per MW. The proposed framework includes a database receiving input from electrical and environmental sensors, a fault detection algorithm that discovers liabilities and potential hazards within the MG, an agent-based simulation of the MG system, an optimal computing budget allocation-based control selection algorithm that uses the agent-based simulation to decide the best control design of the MG, and a multiobjective algorithm for optimizing the decisions of the MG given the best control design. For validating our framework, we use the structure of a realistic MG that is simulated using real-historical data. The experiments reveal that the proposed framework significantly reduces the computational burden of a considerably complex multiobjective problem.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2015.2464709</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2017-01, Vol.8 (1), p.209-218 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_7210221 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Agent-based simulation Algorithm design and analysis Algorithms Automatic control autonomous control Buildings Computational modeling Computer simulation Control design Data models Decisions Distributed generation Fault detection Liabilities microgrids (MGs) multiobjective optimization Multiple objective analysis Operating costs Optimization real-time simulation Resource allocation Sensors Simulation |
title | Dynamic Data Driven Adaptive Simulation Framework for Automated Control in Microgrids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Data%20Driven%20Adaptive%20Simulation%20Framework%20for%20Automated%20Control%20in%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Thanos,%20Aristotelis%20E.&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=209&rft.epage=218&rft.pages=209-218&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2015.2464709&rft_dat=%3Cproquest_RIE%3E1856381269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856381269&rft_id=info:pmid/&rft_ieee_id=7210221&rfr_iscdi=true |