Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing

Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2016-09, Vol.27 (9), p.1907-1919
Hauptverfasser: Deliang Fan, Sharad, Mrigank, Sengupta, Abhronil, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide direct mapping for such primitives are of great interest. In this paper, we propose that the computing blocks for HTM can be mapped using low-voltage, magnetometallic spin-neurons combined with an emerging resistive crossbar network, which involves a comprehensive design at algorithm, architecture, circuit, and device levels. Simulation results show the possibility of more than 200× lower energy as compared with a 45-nm CMOS ASIC design.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2015.2462731