Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing
Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide dir...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2016-09, Vol.27 (9), p.1907-1919 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide direct mapping for such primitives are of great interest. In this paper, we propose that the computing blocks for HTM can be mapped using low-voltage, magnetometallic spin-neurons combined with an emerging resistive crossbar network, which involves a comprehensive design at algorithm, architecture, circuit, and device levels. Simulation results show the possibility of more than 200× lower energy as compared with a 45-nm CMOS ASIC design. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2015.2462731 |