Glyph-Based Comparative Visualization for Diffusion Tensor Fields

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2016-01, Vol.22 (1), p.797-806
Hauptverfasser: Changgong Zhang, Schultz, Thomas, Lawonn, Kai, Eisemann, Elmar, Vilanova, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 1
container_start_page 797
container_title IEEE transactions on visualization and computer graphics
container_volume 22
creator Changgong Zhang
Schultz, Thomas
Lawonn, Kai
Eisemann, Elmar
Vilanova, Anna
description Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.
doi_str_mv 10.1109/TVCG.2015.2467435
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7192722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7192722</ieee_id><sourcerecordid>2174298752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABGk4MVL6r43e6xRq1DwUntdNskspuRlthHqr3dDaw-e5vXNMHwIXRM8IwTrh9U6WcwoJmJGuVSciRM0JpqTCAssT0OOlYqopHKELrzfYEw4j_U5GlEpqFZUj9F8Ue7az-jResinSVO1trPb4hum68L3tix-QtXUU9d006fCud4P1QpqHxovBZS5v0RnzpYerg5xgj5enlfJa7R8X7wl82WUMa63UZwyCy7N4gxonOE8ldZxkeWCOcxlDAo4k5ILIFRkNLagFVNcawrEMW0lm6D7_d22a7568FtTFT6DsrQ1NL03RDEsY6wpDejdP3TT9F0dvjOUKE51rMRAkT2VdY33HTjTdkVlu50h2Ax-zeDXDH7NwW_YuT1c7tMK8uPGn9AA3OyBAgCOY0U0VeGxX0fzfaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174298752</pqid></control><display><type>article</type><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</creator><creatorcontrib>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</creatorcontrib><description>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2015.2467435</identifier><identifier>PMID: 26529729</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Brain ; Brain - physiology ; Comparative Visualization ; Computer Graphics ; Data visualization ; Datasets ; Diffusion ; Diffusion Tensor Field ; Diffusion tensor imaging ; Diffusion Tensor Imaging - methods ; Encoding ; Glyph Design ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Mathematical analysis ; Shape ; Superposition (mathematics) ; Tensile stress ; Tensors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.797-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</citedby><cites>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7192722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7192722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26529729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Changgong Zhang</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Lawonn, Kai</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><creatorcontrib>Vilanova, Anna</creatorcontrib><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Comparative Visualization</subject><subject>Computer Graphics</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Diffusion</subject><subject>Diffusion Tensor Field</subject><subject>Diffusion tensor imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Encoding</subject><subject>Glyph Design</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Shape</subject><subject>Superposition (mathematics)</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABGk4MVL6r43e6xRq1DwUntdNskspuRlthHqr3dDaw-e5vXNMHwIXRM8IwTrh9U6WcwoJmJGuVSciRM0JpqTCAssT0OOlYqopHKELrzfYEw4j_U5GlEpqFZUj9F8Ue7az-jResinSVO1trPb4hum68L3tix-QtXUU9d006fCud4P1QpqHxovBZS5v0RnzpYerg5xgj5enlfJa7R8X7wl82WUMa63UZwyCy7N4gxonOE8ldZxkeWCOcxlDAo4k5ILIFRkNLagFVNcawrEMW0lm6D7_d22a7568FtTFT6DsrQ1NL03RDEsY6wpDejdP3TT9F0dvjOUKE51rMRAkT2VdY33HTjTdkVlu50h2Ax-zeDXDH7NwW_YuT1c7tMK8uPGn9AA3OyBAgCOY0U0VeGxX0fzfaA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Changgong Zhang</creator><creator>Schultz, Thomas</creator><creator>Lawonn, Kai</creator><creator>Eisemann, Elmar</creator><creator>Vilanova, Anna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><author>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Comparative Visualization</topic><topic>Computer Graphics</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Diffusion</topic><topic>Diffusion Tensor Field</topic><topic>Diffusion tensor imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Encoding</topic><topic>Glyph Design</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Shape</topic><topic>Superposition (mathematics)</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changgong Zhang</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Lawonn, Kai</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><creatorcontrib>Vilanova, Anna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changgong Zhang</au><au>Schultz, Thomas</au><au>Lawonn, Kai</au><au>Eisemann, Elmar</au><au>Vilanova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>797</spage><epage>806</epage><pages>797-806</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26529729</pmid><doi>10.1109/TVCG.2015.2467435</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.797-806
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_7192722
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Anisotropy
Brain
Brain - physiology
Comparative Visualization
Computer Graphics
Data visualization
Datasets
Diffusion
Diffusion Tensor Field
Diffusion tensor imaging
Diffusion Tensor Imaging - methods
Encoding
Glyph Design
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Mathematical analysis
Shape
Superposition (mathematics)
Tensile stress
Tensors
Visualization
title Glyph-Based Comparative Visualization for Diffusion Tensor Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glyph-Based%20Comparative%20Visualization%20for%20Diffusion%20Tensor%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Changgong%20Zhang&rft.date=2016-01-01&rft.volume=22&rft.issue=1&rft.spage=797&rft.epage=806&rft.pages=797-806&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2015.2467435&rft_dat=%3Cproquest_RIE%3E2174298752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174298752&rft_id=info:pmid/26529729&rft_ieee_id=7192722&rfr_iscdi=true