Glyph-Based Comparative Visualization for Diffusion Tensor Fields
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2016-01, Vol.22 (1), p.797-806 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 1 |
container_start_page | 797 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 22 |
creator | Changgong Zhang Schultz, Thomas Lawonn, Kai Eisemann, Elmar Vilanova, Anna |
description | Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject. |
doi_str_mv | 10.1109/TVCG.2015.2467435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7192722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7192722</ieee_id><sourcerecordid>2174298752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABGk4MVL6r43e6xRq1DwUntdNskspuRlthHqr3dDaw-e5vXNMHwIXRM8IwTrh9U6WcwoJmJGuVSciRM0JpqTCAssT0OOlYqopHKELrzfYEw4j_U5GlEpqFZUj9F8Ue7az-jResinSVO1trPb4hum68L3tix-QtXUU9d006fCud4P1QpqHxovBZS5v0RnzpYerg5xgj5enlfJa7R8X7wl82WUMa63UZwyCy7N4gxonOE8ldZxkeWCOcxlDAo4k5ILIFRkNLagFVNcawrEMW0lm6D7_d22a7568FtTFT6DsrQ1NL03RDEsY6wpDejdP3TT9F0dvjOUKE51rMRAkT2VdY33HTjTdkVlu50h2Ax-zeDXDH7NwW_YuT1c7tMK8uPGn9AA3OyBAgCOY0U0VeGxX0fzfaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174298752</pqid></control><display><type>article</type><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</creator><creatorcontrib>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</creatorcontrib><description>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2015.2467435</identifier><identifier>PMID: 26529729</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Brain ; Brain - physiology ; Comparative Visualization ; Computer Graphics ; Data visualization ; Datasets ; Diffusion ; Diffusion Tensor Field ; Diffusion tensor imaging ; Diffusion Tensor Imaging - methods ; Encoding ; Glyph Design ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic resonance imaging ; Mathematical analysis ; Shape ; Superposition (mathematics) ; Tensile stress ; Tensors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.797-806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</citedby><cites>FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7192722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7192722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26529729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Changgong Zhang</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Lawonn, Kai</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><creatorcontrib>Vilanova, Anna</creatorcontrib><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Comparative Visualization</subject><subject>Computer Graphics</subject><subject>Data visualization</subject><subject>Datasets</subject><subject>Diffusion</subject><subject>Diffusion Tensor Field</subject><subject>Diffusion tensor imaging</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Encoding</subject><subject>Glyph Design</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Shape</subject><subject>Superposition (mathematics)</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABGk4MVL6r43e6xRq1DwUntdNskspuRlthHqr3dDaw-e5vXNMHwIXRM8IwTrh9U6WcwoJmJGuVSciRM0JpqTCAssT0OOlYqopHKELrzfYEw4j_U5GlEpqFZUj9F8Ue7az-jResinSVO1trPb4hum68L3tix-QtXUU9d006fCud4P1QpqHxovBZS5v0RnzpYerg5xgj5enlfJa7R8X7wl82WUMa63UZwyCy7N4gxonOE8ldZxkeWCOcxlDAo4k5ILIFRkNLagFVNcawrEMW0lm6D7_d22a7568FtTFT6DsrQ1NL03RDEsY6wpDejdP3TT9F0dvjOUKE51rMRAkT2VdY33HTjTdkVlu50h2Ax-zeDXDH7NwW_YuT1c7tMK8uPGn9AA3OyBAgCOY0U0VeGxX0fzfaA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Changgong Zhang</creator><creator>Schultz, Thomas</creator><creator>Lawonn, Kai</creator><creator>Eisemann, Elmar</creator><creator>Vilanova, Anna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</title><author>Changgong Zhang ; Schultz, Thomas ; Lawonn, Kai ; Eisemann, Elmar ; Vilanova, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8b3aefbc8ce28c0db6af45cd53f0468e7e436645e125c28ae97374992e1f39a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Comparative Visualization</topic><topic>Computer Graphics</topic><topic>Data visualization</topic><topic>Datasets</topic><topic>Diffusion</topic><topic>Diffusion Tensor Field</topic><topic>Diffusion tensor imaging</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Encoding</topic><topic>Glyph Design</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Shape</topic><topic>Superposition (mathematics)</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changgong Zhang</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Lawonn, Kai</creatorcontrib><creatorcontrib>Eisemann, Elmar</creatorcontrib><creatorcontrib>Vilanova, Anna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changgong Zhang</au><au>Schultz, Thomas</au><au>Lawonn, Kai</au><au>Eisemann, Elmar</au><au>Vilanova, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glyph-Based Comparative Visualization for Diffusion Tensor Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>797</spage><epage>806</epage><pages>797-806</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26529729</pmid><doi>10.1109/TVCG.2015.2467435</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.797-806 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_7192722 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropic magnetoresistance Anisotropy Brain Brain - physiology Comparative Visualization Computer Graphics Data visualization Datasets Diffusion Diffusion Tensor Field Diffusion tensor imaging Diffusion Tensor Imaging - methods Encoding Glyph Design Humans Image Processing, Computer-Assisted - methods Magnetic resonance imaging Mathematical analysis Shape Superposition (mathematics) Tensile stress Tensors Visualization |
title | Glyph-Based Comparative Visualization for Diffusion Tensor Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glyph-Based%20Comparative%20Visualization%20for%20Diffusion%20Tensor%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Changgong%20Zhang&rft.date=2016-01-01&rft.volume=22&rft.issue=1&rft.spage=797&rft.epage=806&rft.pages=797-806&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2015.2467435&rft_dat=%3Cproquest_RIE%3E2174298752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174298752&rft_id=info:pmid/26529729&rft_ieee_id=7192722&rfr_iscdi=true |