Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm

Compressed sensing (CS) is a technique that is suitable for compressing and recovering signals having sparse representations in certain bases. CS has been widely used to optimize the measurement process of bandwidth and power constrained systems like wireless body sensor network. The central issues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2015-12, Vol.64 (12), p.3405-3413
Hauptverfasser: Ravelomanantsoa, Andrianiaina, Rabah, Hassan, Rouane, Amar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3413
container_issue 12
container_start_page 3405
container_title IEEE transactions on instrumentation and measurement
container_volume 64
creator Ravelomanantsoa, Andrianiaina
Rabah, Hassan
Rouane, Amar
description Compressed sensing (CS) is a technique that is suitable for compressing and recovering signals having sparse representations in certain bases. CS has been widely used to optimize the measurement process of bandwidth and power constrained systems like wireless body sensor network. The central issues with CS are the construction of measurement matrix and the development of recovery algorithm. In this paper, we propose a simple deterministic measurement matrix that facilitates the hardware implementation. To control the sparsity level of the signals, we apply a thresholding approach in the discrete cosine transform domain. We propose a fast and simple recovery algorithm that performs the proposed thresholding approach. We validate the proposed method by compressing and recovering electrocardiogram and electromyogram signals. We implement the proposed measurement matrix in a MSP-EXP430G2 LaunchPad development board. The simulation and experimental results show that the proposed measurement matrix has a better performance in terms of reconstruction quality compared with random matrices. Depending on the compression ratio, it improves the signal-to-noise ratio of the reconstructed signals from 6 to 20 dB. The obtained results also confirm that the proposed recovery algorithm is, respectively, 23 and 12 times faster than the orthogonal matching pursuit (OMP) and stagewise OMP algorithms.
doi_str_mv 10.1109/TIM.2015.2459471
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7185392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7185392</ieee_id><sourcerecordid>3867216621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d1c890a44b34ad2e6e8f2c422462d868cb858a0175e42679118865fc055decd63</originalsourceid><addsrcrecordid>eNo9kM9LAkEYhocoyKx70GWgU4e1-b0z3cQyBSVIO3UYxtnPGnF3bWaV_O9bUTp98PK8Lx8PQreU9Cgl5nE-nvYYobLHhDQip2eoQ6XMM6MUO0cdQqjOjJDqEl2ltCKE5ErkHfQ5qMtNhJSgwDOoUqi-nnAfz0K5WQN-hgZiGaqQmuDxFFzaRiihavDUNTH8YlcV2OGhSw1-B1_vIO5xf_1Vx9B8l9foYunWCW5Ot4s-hi_zwSibvL2OB_1J5rmRTVZQrw1xQiy4cAUDBXrJvGBMKFZopf1CS-0IzSUIpnJDqdZKLj2RsgBfKN5FD8fdb7e2mxhKF_e2dsGO-hN7yAg3mkmpdrRl74_sJtY_W0iNXdXbWLXvWZpzzghv_bUUOVI-1ilFWP7PUmIPum2r2x5025PutnJ3rAQA-MdzqiU3jP8BSYR50A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733203245</pqid></control><display><type>article</type><title>Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Ravelomanantsoa, Andrianiaina ; Rabah, Hassan ; Rouane, Amar</creator><creatorcontrib>Ravelomanantsoa, Andrianiaina ; Rabah, Hassan ; Rouane, Amar</creatorcontrib><description>Compressed sensing (CS) is a technique that is suitable for compressing and recovering signals having sparse representations in certain bases. CS has been widely used to optimize the measurement process of bandwidth and power constrained systems like wireless body sensor network. The central issues with CS are the construction of measurement matrix and the development of recovery algorithm. In this paper, we propose a simple deterministic measurement matrix that facilitates the hardware implementation. To control the sparsity level of the signals, we apply a thresholding approach in the discrete cosine transform domain. We propose a fast and simple recovery algorithm that performs the proposed thresholding approach. We validate the proposed method by compressing and recovering electrocardiogram and electromyogram signals. We implement the proposed measurement matrix in a MSP-EXP430G2 LaunchPad development board. The simulation and experimental results show that the proposed measurement matrix has a better performance in terms of reconstruction quality compared with random matrices. Depending on the compression ratio, it improves the signal-to-noise ratio of the reconstructed signals from 6 to 20 dB. The obtained results also confirm that the proposed recovery algorithm is, respectively, 23 and 12 times faster than the orthogonal matching pursuit (OMP) and stagewise OMP algorithms.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2015.2459471</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Compressed sensing ; Compressed sensing (CS) ; deterministic measurement matrix ; Discrete cosine transforms ; electrocardiogram (ECG) ; Electrocardiography ; electromyogram (EMG) ; Engineering Sciences ; Matching pursuit algorithms ; Measurement techniques ; recovery algorithm ; Signal and Image processing ; Sparse matrices</subject><ispartof>IEEE transactions on instrumentation and measurement, 2015-12, Vol.64 (12), p.3405-3413</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d1c890a44b34ad2e6e8f2c422462d868cb858a0175e42679118865fc055decd63</citedby><cites>FETCH-LOGICAL-c395t-d1c890a44b34ad2e6e8f2c422462d868cb858a0175e42679118865fc055decd63</cites><orcidid>0000-0001-6334-3084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7185392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7185392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03982556$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravelomanantsoa, Andrianiaina</creatorcontrib><creatorcontrib>Rabah, Hassan</creatorcontrib><creatorcontrib>Rouane, Amar</creatorcontrib><title>Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Compressed sensing (CS) is a technique that is suitable for compressing and recovering signals having sparse representations in certain bases. CS has been widely used to optimize the measurement process of bandwidth and power constrained systems like wireless body sensor network. The central issues with CS are the construction of measurement matrix and the development of recovery algorithm. In this paper, we propose a simple deterministic measurement matrix that facilitates the hardware implementation. To control the sparsity level of the signals, we apply a thresholding approach in the discrete cosine transform domain. We propose a fast and simple recovery algorithm that performs the proposed thresholding approach. We validate the proposed method by compressing and recovering electrocardiogram and electromyogram signals. We implement the proposed measurement matrix in a MSP-EXP430G2 LaunchPad development board. The simulation and experimental results show that the proposed measurement matrix has a better performance in terms of reconstruction quality compared with random matrices. Depending on the compression ratio, it improves the signal-to-noise ratio of the reconstructed signals from 6 to 20 dB. The obtained results also confirm that the proposed recovery algorithm is, respectively, 23 and 12 times faster than the orthogonal matching pursuit (OMP) and stagewise OMP algorithms.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Compressed sensing (CS)</subject><subject>deterministic measurement matrix</subject><subject>Discrete cosine transforms</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>electromyogram (EMG)</subject><subject>Engineering Sciences</subject><subject>Matching pursuit algorithms</subject><subject>Measurement techniques</subject><subject>recovery algorithm</subject><subject>Signal and Image processing</subject><subject>Sparse matrices</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LAkEYhocoyKx70GWgU4e1-b0z3cQyBSVIO3UYxtnPGnF3bWaV_O9bUTp98PK8Lx8PQreU9Cgl5nE-nvYYobLHhDQip2eoQ6XMM6MUO0cdQqjOjJDqEl2ltCKE5ErkHfQ5qMtNhJSgwDOoUqi-nnAfz0K5WQN-hgZiGaqQmuDxFFzaRiihavDUNTH8YlcV2OGhSw1-B1_vIO5xf_1Vx9B8l9foYunWCW5Ot4s-hi_zwSibvL2OB_1J5rmRTVZQrw1xQiy4cAUDBXrJvGBMKFZopf1CS-0IzSUIpnJDqdZKLj2RsgBfKN5FD8fdb7e2mxhKF_e2dsGO-hN7yAg3mkmpdrRl74_sJtY_W0iNXdXbWLXvWZpzzghv_bUUOVI-1ilFWP7PUmIPum2r2x5025PutnJ3rAQA-MdzqiU3jP8BSYR50A</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Ravelomanantsoa, Andrianiaina</creator><creator>Rabah, Hassan</creator><creator>Rouane, Amar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6334-3084</orcidid></search><sort><creationdate>20151201</creationdate><title>Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm</title><author>Ravelomanantsoa, Andrianiaina ; Rabah, Hassan ; Rouane, Amar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d1c890a44b34ad2e6e8f2c422462d868cb858a0175e42679118865fc055decd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Compressed sensing (CS)</topic><topic>deterministic measurement matrix</topic><topic>Discrete cosine transforms</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>electromyogram (EMG)</topic><topic>Engineering Sciences</topic><topic>Matching pursuit algorithms</topic><topic>Measurement techniques</topic><topic>recovery algorithm</topic><topic>Signal and Image processing</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravelomanantsoa, Andrianiaina</creatorcontrib><creatorcontrib>Rabah, Hassan</creatorcontrib><creatorcontrib>Rouane, Amar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ravelomanantsoa, Andrianiaina</au><au>Rabah, Hassan</au><au>Rouane, Amar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>64</volume><issue>12</issue><spage>3405</spage><epage>3413</epage><pages>3405-3413</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Compressed sensing (CS) is a technique that is suitable for compressing and recovering signals having sparse representations in certain bases. CS has been widely used to optimize the measurement process of bandwidth and power constrained systems like wireless body sensor network. The central issues with CS are the construction of measurement matrix and the development of recovery algorithm. In this paper, we propose a simple deterministic measurement matrix that facilitates the hardware implementation. To control the sparsity level of the signals, we apply a thresholding approach in the discrete cosine transform domain. We propose a fast and simple recovery algorithm that performs the proposed thresholding approach. We validate the proposed method by compressing and recovering electrocardiogram and electromyogram signals. We implement the proposed measurement matrix in a MSP-EXP430G2 LaunchPad development board. The simulation and experimental results show that the proposed measurement matrix has a better performance in terms of reconstruction quality compared with random matrices. Depending on the compression ratio, it improves the signal-to-noise ratio of the reconstructed signals from 6 to 20 dB. The obtained results also confirm that the proposed recovery algorithm is, respectively, 23 and 12 times faster than the orthogonal matching pursuit (OMP) and stagewise OMP algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2015.2459471</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6334-3084</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2015-12, Vol.64 (12), p.3405-3413
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_7185392
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Compressed sensing
Compressed sensing (CS)
deterministic measurement matrix
Discrete cosine transforms
electrocardiogram (ECG)
Electrocardiography
electromyogram (EMG)
Engineering Sciences
Matching pursuit algorithms
Measurement techniques
recovery algorithm
Signal and Image processing
Sparse matrices
title Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20Sensing:%20A%20Simple%20Deterministic%20Measurement%20Matrix%20and%20a%20Fast%20Recovery%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ravelomanantsoa,%20Andrianiaina&rft.date=2015-12-01&rft.volume=64&rft.issue=12&rft.spage=3405&rft.epage=3413&rft.pages=3405-3413&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2015.2459471&rft_dat=%3Cproquest_RIE%3E3867216621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733203245&rft_id=info:pmid/&rft_ieee_id=7185392&rfr_iscdi=true