Textually Relevant Spatial Skylines
We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is especially relevant to modern applications, where...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2016-01, Vol.28 (1), p.224-237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 1 |
container_start_page | 224 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 28 |
creator | Jieming Shi Dingming Wu Mamoulis, Nikos |
description | We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate three models for integrating textual relevance into the spatial skyline. Among them, model STD, which combines spatial distance with textual relevance in a derived dimensional space, is found to be the most effective one. STD computes a skyline which not only satisfies the intent of STS, but also has a small and easy-to-interpret size. We propose an efficient algorithm for computing STD-based skylines, which operates on an IR-tree that indexes the data. The effectiveness of our STD model and the efficiency of the proposed algorithm are evaluated on real data sets. |
doi_str_mv | 10.1109/TKDE.2015.2465374 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7181692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7181692</ieee_id><sourcerecordid>10_1109_TKDE_2015_2465374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d9ff1b1fa78173b820a6315f406cbe9be124e6d1cfefc16e746e5296c4ae6b7e3</originalsourceid><addsrcrecordid>eNo9j81Kw0AYRQdRsFYfQNwEXCfON_-zlFp_sCDYuB4m028gOtaSiWLe3oQWV_cu7rlwCLkEWgFQe1M_3y0rRkFWTCjJtTgiM5DSlAwsHI-dCigFF_qUnOX8Tik12sCMXNf423_7lIbiFRP--G1frHe-b30q1h9DareYz8lJ9CnjxSHn5O1-WS8ey9XLw9PidlUGTk1fbmyM0ED047HmjWHUKw4yCqpCg7ZBYALVBkLEGEChFgolsyoIj6rRyOcE9r-h-8q5w-h2Xfvpu8EBdZOlmyzdZOkOliNztWdaRPzfazCgLON_fNdN8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Textually Relevant Spatial Skylines</title><source>IEEE Electronic Library (IEL)</source><creator>Jieming Shi ; Dingming Wu ; Mamoulis, Nikos</creator><creatorcontrib>Jieming Shi ; Dingming Wu ; Mamoulis, Nikos</creatorcontrib><description>We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate three models for integrating textual relevance into the spatial skyline. Among them, model STD, which combines spatial distance with textual relevance in a derived dimensional space, is found to be the most effective one. STD computes a skyline which not only satisfies the intent of STS, but also has a small and easy-to-interpret size. We propose an efficient algorithm for computing STD-based skylines, which operates on an IR-tree that indexes the data. The effectiveness of our STD model and the efficiency of the proposed algorithm are evaluated on real data sets.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2015.2465374</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer science ; Data engineering ; Data models ; Euclidean distance ; Indexes ; Knowledge discovery</subject><ispartof>IEEE transactions on knowledge and data engineering, 2016-01, Vol.28 (1), p.224-237</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-d9ff1b1fa78173b820a6315f406cbe9be124e6d1cfefc16e746e5296c4ae6b7e3</citedby><cites>FETCH-LOGICAL-c308t-d9ff1b1fa78173b820a6315f406cbe9be124e6d1cfefc16e746e5296c4ae6b7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7181692$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7181692$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jieming Shi</creatorcontrib><creatorcontrib>Dingming Wu</creatorcontrib><creatorcontrib>Mamoulis, Nikos</creatorcontrib><title>Textually Relevant Spatial Skylines</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate three models for integrating textual relevance into the spatial skyline. Among them, model STD, which combines spatial distance with textual relevance in a derived dimensional space, is found to be the most effective one. STD computes a skyline which not only satisfies the intent of STS, but also has a small and easy-to-interpret size. We propose an efficient algorithm for computing STD-based skylines, which operates on an IR-tree that indexes the data. The effectiveness of our STD model and the efficiency of the proposed algorithm are evaluated on real data sets.</description><subject>Computational modeling</subject><subject>Computer science</subject><subject>Data engineering</subject><subject>Data models</subject><subject>Euclidean distance</subject><subject>Indexes</subject><subject>Knowledge discovery</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j81Kw0AYRQdRsFYfQNwEXCfON_-zlFp_sCDYuB4m028gOtaSiWLe3oQWV_cu7rlwCLkEWgFQe1M_3y0rRkFWTCjJtTgiM5DSlAwsHI-dCigFF_qUnOX8Tik12sCMXNf423_7lIbiFRP--G1frHe-b30q1h9DareYz8lJ9CnjxSHn5O1-WS8ey9XLw9PidlUGTk1fbmyM0ED047HmjWHUKw4yCqpCg7ZBYALVBkLEGEChFgolsyoIj6rRyOcE9r-h-8q5w-h2Xfvpu8EBdZOlmyzdZOkOliNztWdaRPzfazCgLON_fNdN8g</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jieming Shi</creator><creator>Dingming Wu</creator><creator>Mamoulis, Nikos</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Textually Relevant Spatial Skylines</title><author>Jieming Shi ; Dingming Wu ; Mamoulis, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d9ff1b1fa78173b820a6315f406cbe9be124e6d1cfefc16e746e5296c4ae6b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational modeling</topic><topic>Computer science</topic><topic>Data engineering</topic><topic>Data models</topic><topic>Euclidean distance</topic><topic>Indexes</topic><topic>Knowledge discovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jieming Shi</creatorcontrib><creatorcontrib>Dingming Wu</creatorcontrib><creatorcontrib>Mamoulis, Nikos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jieming Shi</au><au>Dingming Wu</au><au>Mamoulis, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Textually Relevant Spatial Skylines</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>28</volume><issue>1</issue><spage>224</spage><epage>237</epage><pages>224-237</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate three models for integrating textual relevance into the spatial skyline. Among them, model STD, which combines spatial distance with textual relevance in a derived dimensional space, is found to be the most effective one. STD computes a skyline which not only satisfies the intent of STS, but also has a small and easy-to-interpret size. We propose an efficient algorithm for computing STD-based skylines, which operates on an IR-tree that indexes the data. The effectiveness of our STD model and the efficiency of the proposed algorithm are evaluated on real data sets.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2015.2465374</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2016-01, Vol.28 (1), p.224-237 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_7181692 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computer science Data engineering Data models Euclidean distance Indexes Knowledge discovery |
title | Textually Relevant Spatial Skylines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Textually%20Relevant%20Spatial%20Skylines&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Jieming%20Shi&rft.date=2016-01-01&rft.volume=28&rft.issue=1&rft.spage=224&rft.epage=237&rft.pages=224-237&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2015.2465374&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2015_2465374%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7181692&rfr_iscdi=true |