A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images
This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2016-01, Vol.35 (1), p.109-118 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | IEEE transactions on medical imaging |
container_volume | 35 |
creator | Li, Qiaoliang Feng, Bowei Xie, LinPei Liang, Ping Zhang, Huisheng Wang, Tianfu |
description | This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation. |
doi_str_mv | 10.1109/TMI.2015.2457891 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7161344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7161344</ieee_id><sourcerecordid>3911992981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-617d3e21e115eb963463e4515007427b035aa3594e9d56b68c7fa31ff99fcea3</originalsourceid><addsrcrecordid>eNpdkEtLw1AQhS-i2FrdC4JccOMmdeY-k2UpPgotghZxF27TSU3Jo-Ymi_57U1u7cHUW853D8DF2jTBEhOhhPpsMBaAeCqVtGOEJ66PWYSC0-jxlfRA2DACM6LEL79cAqDRE56wnjIBQgumz6YiP68r7YFYtXZ41Wz4lV5dZueKjzaauXPLF06rmH-Q95fydVgWVjWuyquRZyd-oyUqX80nhVuQv2Vnqck9Xhxyw-dPjfPwSTF-fJ-PRNEiUgSYwaJeSBBKipkVkpDKSlEYNYJWwC5DaOakjRdFSm4UJE5s6iWkaRWlCTg7Y_X62---7Jd_EReYTynNXUtX6GK1WWihUtkPv_qHrqq27j38pKUHvYsBgTyU7FTWl8abOCldvY4R4JzruRMc70fFBdFe5PQy3i4KWx8Kf2Q642QMZER3PFg1KpeQPmPR_Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753305175</pqid></control><display><type>article</type><title>A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Qiaoliang ; Feng, Bowei ; Xie, LinPei ; Liang, Ping ; Zhang, Huisheng ; Wang, Tianfu</creator><creatorcontrib>Li, Qiaoliang ; Feng, Bowei ; Xie, LinPei ; Liang, Ping ; Zhang, Huisheng ; Wang, Tianfu</creatorcontrib><description>This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2457891</identifier><identifier>PMID: 26208306</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Cross-modality learning ; Databases, Factual ; deep learning ; Deformable models ; Feature extraction ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Machine Learning ; Neural networks ; Retina ; retinal image ; Retinal Vessels - anatomy & histology ; Training ; vessel segmentation</subject><ispartof>IEEE transactions on medical imaging, 2016-01, Vol.35 (1), p.109-118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-617d3e21e115eb963463e4515007427b035aa3594e9d56b68c7fa31ff99fcea3</citedby><cites>FETCH-LOGICAL-c460t-617d3e21e115eb963463e4515007427b035aa3594e9d56b68c7fa31ff99fcea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7161344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7161344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26208306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Feng, Bowei</creatorcontrib><creatorcontrib>Xie, LinPei</creatorcontrib><creatorcontrib>Liang, Ping</creatorcontrib><creatorcontrib>Zhang, Huisheng</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><title>A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cross-modality learning</subject><subject>Databases, Factual</subject><subject>deep learning</subject><subject>Deformable models</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Retina</subject><subject>retinal image</subject><subject>Retinal Vessels - anatomy & histology</subject><subject>Training</subject><subject>vessel segmentation</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw1AQhS-i2FrdC4JccOMmdeY-k2UpPgotghZxF27TSU3Jo-Ymi_57U1u7cHUW853D8DF2jTBEhOhhPpsMBaAeCqVtGOEJ66PWYSC0-jxlfRA2DACM6LEL79cAqDRE56wnjIBQgumz6YiP68r7YFYtXZ41Wz4lV5dZueKjzaauXPLF06rmH-Q95fydVgWVjWuyquRZyd-oyUqX80nhVuQv2Vnqck9Xhxyw-dPjfPwSTF-fJ-PRNEiUgSYwaJeSBBKipkVkpDKSlEYNYJWwC5DaOakjRdFSm4UJE5s6iWkaRWlCTg7Y_X62---7Jd_EReYTynNXUtX6GK1WWihUtkPv_qHrqq27j38pKUHvYsBgTyU7FTWl8abOCldvY4R4JzruRMc70fFBdFe5PQy3i4KWx8Kf2Q642QMZER3PFg1KpeQPmPR_Zw</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Li, Qiaoliang</creator><creator>Feng, Bowei</creator><creator>Xie, LinPei</creator><creator>Liang, Ping</creator><creator>Zhang, Huisheng</creator><creator>Wang, Tianfu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images</title><author>Li, Qiaoliang ; Feng, Bowei ; Xie, LinPei ; Liang, Ping ; Zhang, Huisheng ; Wang, Tianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-617d3e21e115eb963463e4515007427b035aa3594e9d56b68c7fa31ff99fcea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cross-modality learning</topic><topic>Databases, Factual</topic><topic>deep learning</topic><topic>Deformable models</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Retina</topic><topic>retinal image</topic><topic>Retinal Vessels - anatomy & histology</topic><topic>Training</topic><topic>vessel segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Feng, Bowei</creatorcontrib><creatorcontrib>Xie, LinPei</creatorcontrib><creatorcontrib>Liang, Ping</creatorcontrib><creatorcontrib>Zhang, Huisheng</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Qiaoliang</au><au>Feng, Bowei</au><au>Xie, LinPei</au><au>Liang, Ping</au><au>Zhang, Huisheng</au><au>Wang, Tianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-01</date><risdate>2016</risdate><volume>35</volume><issue>1</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26208306</pmid><doi>10.1109/TMI.2015.2457891</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2016-01, Vol.35 (1), p.109-118 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_7161344 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Cross-modality learning Databases, Factual deep learning Deformable models Feature extraction Humans Image Processing, Computer-Assisted - methods Image segmentation Machine Learning Neural networks Retina retinal image Retinal Vessels - anatomy & histology Training vessel segmentation |
title | A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross-Modality%20Learning%20Approach%20for%20Vessel%20Segmentation%20in%20Retinal%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Qiaoliang&rft.date=2016-01&rft.volume=35&rft.issue=1&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2457891&rft_dat=%3Cproquest_RIE%3E3911992981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753305175&rft_id=info:pmid/26208306&rft_ieee_id=7161344&rfr_iscdi=true |