Design and tuning of fuzzy if-then rules for automatic classification

We propose an approach to the design and tuning of fuzzy rules for automatic classification decision making. This approach is based upon the finding of the weights of fuzzy if-then rules and the shapes of membership functions that minimize the difference between real (desired) and inferred (theoreti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rotshtein, A., Katelnikov, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 50
container_title
container_volume
creator Rotshtein, A.
Katelnikov, D.
description We propose an approach to the design and tuning of fuzzy rules for automatic classification decision making. This approach is based upon the finding of the weights of fuzzy if-then rules and the shapes of membership functions that minimize the difference between real (desired) and inferred (theoretical) classes of decisions. The problem of fuzzy model tuning is stated as a classical mathematical optimization problem.
doi_str_mv 10.1109/NAFIPS.1998.715528
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_715528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>715528</ieee_id><sourcerecordid>715528</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-843bdd87dbaeee4e44e1e8fcb29ac7283e38e92ca8b2324a1ce2ce9faa11c8ed3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiKLN_YE_5A61NckuSxzE3HQwV1Odxm97MSJdKkz5sv97CPBw4fA_nwGFsKepKiNo-vq62u_ePSlhrKi2aRpobVlht6tkKoFHyjhUp_dSzlAUL8p5tniiFY-QYO56nGOKRD5776XI58-DL_E2Rj1NPifth5Djl4YQ5OO56TCn44GYa4gO79dgnKv5zwb62m8_1S7l_e96tV_syCA25NKDarjO6a5GIgABIkPGulRadlkaRMmSlQ9NKJQGFI-nIekQhnKFOLdjyuhvm_uF3DCccz4frV_UH3kZMPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and tuning of fuzzy if-then rules for automatic classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rotshtein, A. ; Katelnikov, D.</creator><creatorcontrib>Rotshtein, A. ; Katelnikov, D.</creatorcontrib><description>We propose an approach to the design and tuning of fuzzy rules for automatic classification decision making. This approach is based upon the finding of the weights of fuzzy if-then rules and the shapes of membership functions that minimize the difference between real (desired) and inferred (theoretical) classes of decisions. The problem of fuzzy model tuning is stated as a classical mathematical optimization problem.</description><identifier>ISBN: 9780780344532</identifier><identifier>ISBN: 0780344537</identifier><identifier>DOI: 10.1109/NAFIPS.1998.715528</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Control systems ; Decision making ; Fuzzy logic ; Fuzzy systems ; Information management ; Input variables ; Medical control systems ; Medical diagnostic imaging ; Shape</subject><ispartof>1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353), 1998, p.50-54</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/715528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/715528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rotshtein, A.</creatorcontrib><creatorcontrib>Katelnikov, D.</creatorcontrib><title>Design and tuning of fuzzy if-then rules for automatic classification</title><title>1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353)</title><addtitle>NAFIPS</addtitle><description>We propose an approach to the design and tuning of fuzzy rules for automatic classification decision making. This approach is based upon the finding of the weights of fuzzy if-then rules and the shapes of membership functions that minimize the difference between real (desired) and inferred (theoretical) classes of decisions. The problem of fuzzy model tuning is stated as a classical mathematical optimization problem.</description><subject>Automatic control</subject><subject>Control systems</subject><subject>Decision making</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Information management</subject><subject>Input variables</subject><subject>Medical control systems</subject><subject>Medical diagnostic imaging</subject><subject>Shape</subject><isbn>9780780344532</isbn><isbn>0780344537</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj1FLwzAUhQMiKLN_YE_5A61NckuSxzE3HQwV1Odxm97MSJdKkz5sv97CPBw4fA_nwGFsKepKiNo-vq62u_ePSlhrKi2aRpobVlht6tkKoFHyjhUp_dSzlAUL8p5tniiFY-QYO56nGOKRD5776XI58-DL_E2Rj1NPifth5Djl4YQ5OO56TCn44GYa4gO79dgnKv5zwb62m8_1S7l_e96tV_syCA25NKDarjO6a5GIgABIkPGulRadlkaRMmSlQ9NKJQGFI-nIekQhnKFOLdjyuhvm_uF3DCccz4frV_UH3kZMPw</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Rotshtein, A.</creator><creator>Katelnikov, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Design and tuning of fuzzy if-then rules for automatic classification</title><author>Rotshtein, A. ; Katelnikov, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-843bdd87dbaeee4e44e1e8fcb29ac7283e38e92ca8b2324a1ce2ce9faa11c8ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Automatic control</topic><topic>Control systems</topic><topic>Decision making</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Information management</topic><topic>Input variables</topic><topic>Medical control systems</topic><topic>Medical diagnostic imaging</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Rotshtein, A.</creatorcontrib><creatorcontrib>Katelnikov, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rotshtein, A.</au><au>Katelnikov, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and tuning of fuzzy if-then rules for automatic classification</atitle><btitle>1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353)</btitle><stitle>NAFIPS</stitle><date>1998</date><risdate>1998</risdate><spage>50</spage><epage>54</epage><pages>50-54</pages><isbn>9780780344532</isbn><isbn>0780344537</isbn><abstract>We propose an approach to the design and tuning of fuzzy rules for automatic classification decision making. This approach is based upon the finding of the weights of fuzzy if-then rules and the shapes of membership functions that minimize the difference between real (desired) and inferred (theoretical) classes of decisions. The problem of fuzzy model tuning is stated as a classical mathematical optimization problem.</abstract><pub>IEEE</pub><doi>10.1109/NAFIPS.1998.715528</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780344532
ispartof 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353), 1998, p.50-54
issn
language eng
recordid cdi_ieee_primary_715528
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Control systems
Decision making
Fuzzy logic
Fuzzy systems
Information management
Input variables
Medical control systems
Medical diagnostic imaging
Shape
title Design and tuning of fuzzy if-then rules for automatic classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20tuning%20of%20fuzzy%20if-then%20rules%20for%20automatic%20classification&rft.btitle=1998%20Conference%20of%20the%20North%20American%20Fuzzy%20Information%20Processing%20Society%20-%20NAFIPS%20(Cat.%20No.98TH8353)&rft.au=Rotshtein,%20A.&rft.date=1998&rft.spage=50&rft.epage=54&rft.pages=50-54&rft.isbn=9780780344532&rft.isbn_list=0780344537&rft_id=info:doi/10.1109/NAFIPS.1998.715528&rft_dat=%3Cieee_6IE%3E715528%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=715528&rfr_iscdi=true