Soft Parallel Wireless Relay via Z-Forward

This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2015-11, Vol.14 (11), p.6339-6352
Hauptverfasser: Lu, Xuanxuan, Li, Jing, Liu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6352
container_issue 11
container_start_page 6339
container_title IEEE transactions on wireless communications
container_volume 14
creator Lu, Xuanxuan
Li, Jing
Liu, Yang
description This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.
doi_str_mv 10.1109/TWC.2015.2452917
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7150425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150425</ieee_id><sourcerecordid>1778054747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRsFb3gpuAGxFS5813llKsCgVFKwU3w2TyAinTps6kSv-9KS0uXL27OPfyOIRcAh0B0OJuNh-PGAU5YkKyAvQRGYCUJmdMmONd5ioHptUpOUtpQSloJeWA3L63dZe9uuhCwJDNm4gBU8reMLht9t247DOftPHHxeqcnNQuJLw43CH5mDzMxk_59OXxeXw_zT1XqsslrwpUvGDGIIhScllqxmsUlfG1r03pDfVCAdUclKFOa-3KSjEsUbOKKT4kN_vddWy_Npg6u2ySxxDcCttNsqC1oVJooXv0-h-6aDdx1X_XU5wzKCjlPUX3lI9tShFru47N0sWtBWp38mwvz-7k2YO8vnK1rzSI-IdrkFQwyX8BA5VnyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733219003</pqid></control><display><type>article</type><title>Soft Parallel Wireless Relay via Z-Forward</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</creator><creatorcontrib>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</creatorcontrib><description>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2452917</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Channels ; Cooperative communication ; Diversity reception ; Economic models ; Mathematical models ; maximal ratio combining ; maximum likelihood ; Maximum likelihood decoding ; Maximum likelihood estimation ; Messages ; Probability density functions ; Proposals ; Relay ; relaying protocols ; Relays ; Signal to noise ratio ; Strikes ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2015-11, Vol.14 (11), p.6339-6352</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</citedby><cites>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Xuanxuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Soft Parallel Wireless Relay via Z-Forward</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</description><subject>Bit error rate</subject><subject>Channels</subject><subject>Cooperative communication</subject><subject>Diversity reception</subject><subject>Economic models</subject><subject>Mathematical models</subject><subject>maximal ratio combining</subject><subject>maximum likelihood</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>Messages</subject><subject>Probability density functions</subject><subject>Proposals</subject><subject>Relay</subject><subject>relaying protocols</subject><subject>Relays</subject><subject>Signal to noise ratio</subject><subject>Strikes</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AURQdRsFb3gpuAGxFS5813llKsCgVFKwU3w2TyAinTps6kSv-9KS0uXL27OPfyOIRcAh0B0OJuNh-PGAU5YkKyAvQRGYCUJmdMmONd5ioHptUpOUtpQSloJeWA3L63dZe9uuhCwJDNm4gBU8reMLht9t247DOftPHHxeqcnNQuJLw43CH5mDzMxk_59OXxeXw_zT1XqsslrwpUvGDGIIhScllqxmsUlfG1r03pDfVCAdUclKFOa-3KSjEsUbOKKT4kN_vddWy_Npg6u2ySxxDcCttNsqC1oVJooXv0-h-6aDdx1X_XU5wzKCjlPUX3lI9tShFru47N0sWtBWp38mwvz-7k2YO8vnK1rzSI-IdrkFQwyX8BA5VnyQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Lu, Xuanxuan</creator><creator>Li, Jing</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>Soft Parallel Wireless Relay via Z-Forward</title><author>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bit error rate</topic><topic>Channels</topic><topic>Cooperative communication</topic><topic>Diversity reception</topic><topic>Economic models</topic><topic>Mathematical models</topic><topic>maximal ratio combining</topic><topic>maximum likelihood</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>Messages</topic><topic>Probability density functions</topic><topic>Proposals</topic><topic>Relay</topic><topic>relaying protocols</topic><topic>Relays</topic><topic>Signal to noise ratio</topic><topic>Strikes</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuanxuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Xuanxuan</au><au>Li, Jing</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Parallel Wireless Relay via Z-Forward</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2015-11</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>6339</spage><epage>6352</epage><pages>6339-6352</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2452917</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2015-11, Vol.14 (11), p.6339-6352
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_7150425
source IEEE Electronic Library (IEL)
subjects Bit error rate
Channels
Cooperative communication
Diversity reception
Economic models
Mathematical models
maximal ratio combining
maximum likelihood
Maximum likelihood decoding
Maximum likelihood estimation
Messages
Probability density functions
Proposals
Relay
relaying protocols
Relays
Signal to noise ratio
Strikes
Wireless communication
Wireless networks
title Soft Parallel Wireless Relay via Z-Forward
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Parallel%20Wireless%20Relay%20via%20Z-Forward&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lu,%20Xuanxuan&rft.date=2015-11&rft.volume=14&rft.issue=11&rft.spage=6339&rft.epage=6352&rft.pages=6339-6352&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2452917&rft_dat=%3Cproquest_RIE%3E1778054747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733219003&rft_id=info:pmid/&rft_ieee_id=7150425&rfr_iscdi=true