Soft Parallel Wireless Relay via Z-Forward
This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2015-11, Vol.14 (11), p.6339-6352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6352 |
---|---|
container_issue | 11 |
container_start_page | 6339 |
container_title | IEEE transactions on wireless communications |
container_volume | 14 |
creator | Lu, Xuanxuan Li, Jing Liu, Yang |
description | This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes. |
doi_str_mv | 10.1109/TWC.2015.2452917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7150425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150425</ieee_id><sourcerecordid>1778054747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRsFb3gpuAGxFS5813llKsCgVFKwU3w2TyAinTps6kSv-9KS0uXL27OPfyOIRcAh0B0OJuNh-PGAU5YkKyAvQRGYCUJmdMmONd5ioHptUpOUtpQSloJeWA3L63dZe9uuhCwJDNm4gBU8reMLht9t247DOftPHHxeqcnNQuJLw43CH5mDzMxk_59OXxeXw_zT1XqsslrwpUvGDGIIhScllqxmsUlfG1r03pDfVCAdUclKFOa-3KSjEsUbOKKT4kN_vddWy_Npg6u2ySxxDcCttNsqC1oVJooXv0-h-6aDdx1X_XU5wzKCjlPUX3lI9tShFru47N0sWtBWp38mwvz-7k2YO8vnK1rzSI-IdrkFQwyX8BA5VnyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733219003</pqid></control><display><type>article</type><title>Soft Parallel Wireless Relay via Z-Forward</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</creator><creatorcontrib>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</creatorcontrib><description>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2452917</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Channels ; Cooperative communication ; Diversity reception ; Economic models ; Mathematical models ; maximal ratio combining ; maximum likelihood ; Maximum likelihood decoding ; Maximum likelihood estimation ; Messages ; Probability density functions ; Proposals ; Relay ; relaying protocols ; Relays ; Signal to noise ratio ; Strikes ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2015-11, Vol.14 (11), p.6339-6352</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</citedby><cites>FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Xuanxuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Soft Parallel Wireless Relay via Z-Forward</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</description><subject>Bit error rate</subject><subject>Channels</subject><subject>Cooperative communication</subject><subject>Diversity reception</subject><subject>Economic models</subject><subject>Mathematical models</subject><subject>maximal ratio combining</subject><subject>maximum likelihood</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>Messages</subject><subject>Probability density functions</subject><subject>Proposals</subject><subject>Relay</subject><subject>relaying protocols</subject><subject>Relays</subject><subject>Signal to noise ratio</subject><subject>Strikes</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AURQdRsFb3gpuAGxFS5813llKsCgVFKwU3w2TyAinTps6kSv-9KS0uXL27OPfyOIRcAh0B0OJuNh-PGAU5YkKyAvQRGYCUJmdMmONd5ioHptUpOUtpQSloJeWA3L63dZe9uuhCwJDNm4gBU8reMLht9t247DOftPHHxeqcnNQuJLw43CH5mDzMxk_59OXxeXw_zT1XqsslrwpUvGDGIIhScllqxmsUlfG1r03pDfVCAdUclKFOa-3KSjEsUbOKKT4kN_vddWy_Npg6u2ySxxDcCttNsqC1oVJooXv0-h-6aDdx1X_XU5wzKCjlPUX3lI9tShFru47N0sWtBWp38mwvz-7k2YO8vnK1rzSI-IdrkFQwyX8BA5VnyQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Lu, Xuanxuan</creator><creator>Li, Jing</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>Soft Parallel Wireless Relay via Z-Forward</title><author>Lu, Xuanxuan ; Li, Jing ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-53d9e639288e14b535b723fe4d8cfcf8bc80c4610731680a777abd62ebe72d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bit error rate</topic><topic>Channels</topic><topic>Cooperative communication</topic><topic>Diversity reception</topic><topic>Economic models</topic><topic>Mathematical models</topic><topic>maximal ratio combining</topic><topic>maximum likelihood</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>Messages</topic><topic>Probability density functions</topic><topic>Proposals</topic><topic>Relay</topic><topic>relaying protocols</topic><topic>Relays</topic><topic>Signal to noise ratio</topic><topic>Strikes</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuanxuan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Xuanxuan</au><au>Li, Jing</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Parallel Wireless Relay via Z-Forward</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2015-11</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>6339</spage><epage>6352</epage><pages>6339-6352</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper considers soft-message forwarding in a 2-hop wireless network. Previous methods have only considered the source-relay channel quality but ignored the relay-destination channel quality, causing potential sub-optimality especially in a parallel-relay setting. This paper takes a centralized approach by accounting for all the individual channel-segments, and proposes a "Z-forward" strategy, in which the i-th relay represents the forward messages in a parameterized piece-wise linear form: θ i -truncated log-likelihood ratio (LLR) of its reception. This message representation not only is numerically stable, and soft-information-preserving, but also allows us to analytically derive the end-to-end bit error rate (with maximal ratio combining (MRC)), and to compute the optimal values of θ i numerically. The results confirm that previous message-forward proposals, however a good performance in a single-relay setting, will considerably degrade as the the number of relays increases. Next, to further simplify the design, we propose a single threshold θ for all the relays, in lieu of one for each, and show that it strikes a balance between performance and computation. Additionally, with Z-forward, we are able to derive the exact probability density function (pdf) of the final reception at the destination, and subsequently to develop the maximum likelihood (ML) estimator. Extensive simulations are presented to verify the efficiency of the new schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2452917</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2015-11, Vol.14 (11), p.6339-6352 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_7150425 |
source | IEEE Electronic Library (IEL) |
subjects | Bit error rate Channels Cooperative communication Diversity reception Economic models Mathematical models maximal ratio combining maximum likelihood Maximum likelihood decoding Maximum likelihood estimation Messages Probability density functions Proposals Relay relaying protocols Relays Signal to noise ratio Strikes Wireless communication Wireless networks |
title | Soft Parallel Wireless Relay via Z-Forward |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Parallel%20Wireless%20Relay%20via%20Z-Forward&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lu,%20Xuanxuan&rft.date=2015-11&rft.volume=14&rft.issue=11&rft.spage=6339&rft.epage=6352&rft.pages=6339-6352&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2452917&rft_dat=%3Cproquest_RIE%3E1778054747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733219003&rft_id=info:pmid/&rft_ieee_id=7150425&rfr_iscdi=true |