Combined Field Integral Equation-Based Theory of Characteristic Mode

Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2015-09, Vol.63 (9), p.3973-3981
Hauptverfasser: Dai, Qi I., Liu, Qin S., Gan, Hui U. I., Weng Cho Chew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3981
container_issue 9
container_start_page 3973
container_title IEEE transactions on antennas and propagation
container_volume 63
creator Dai, Qi I.
Liu, Qin S.
Gan, Hui U. I.
Weng Cho Chew
description Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.
doi_str_mv 10.1109/TAP.2015.2452938
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7150368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150368</ieee_id><sourcerecordid>10_1109_TAP_2015_2452938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwI7HkBVJ8HTt2xhJaqFQEQ5HYohv7mhq1Ddhh6NuTqhXT0dH5GT7GboFPAHh1v5q-TQQHNRFSiaowZ2wESplcCAHnbMQ5mLwS5cclu0rpa7DSSDlij3W3bcOOXDYPtHHZYtfTZ8RNNvv5xT50u_wB05Cu1tTFfdb5rF5jRNtTDKkPNnvpHF2zC4-bRDcnHbP3-WxVP-fL16dFPV3mtuCqz1WJJGSppXTkvG2dQF9BC95q1RbGaG60rrT3WIEFLB3XFq00JSgwBnUxZvz4a2OXUiTffMewxbhvgDcHCs1AoTlQaE4UhsndcRKI6L-uQfGiNMUfHeZYhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</creator><creatorcontrib>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</creatorcontrib><description>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2452938</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Characteristic mode ; closed surface ; combined field integral equation ; Eigenvalues and eigenfunctions ; Integral equations ; Magnetic resonance ; Null space ; Surface impedance</subject><ispartof>IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3973-3981</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</citedby><cites>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Qi I.</creatorcontrib><creatorcontrib>Liu, Qin S.</creatorcontrib><creatorcontrib>Gan, Hui U. I.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</description><subject>Characteristic mode</subject><subject>closed surface</subject><subject>combined field integral equation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Integral equations</subject><subject>Magnetic resonance</subject><subject>Null space</subject><subject>Surface impedance</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1OwzAUhS0EEqWwI7HkBVJ8HTt2xhJaqFQEQ5HYohv7mhq1Ddhh6NuTqhXT0dH5GT7GboFPAHh1v5q-TQQHNRFSiaowZ2wESplcCAHnbMQ5mLwS5cclu0rpa7DSSDlij3W3bcOOXDYPtHHZYtfTZ8RNNvv5xT50u_wB05Cu1tTFfdb5rF5jRNtTDKkPNnvpHF2zC4-bRDcnHbP3-WxVP-fL16dFPV3mtuCqz1WJJGSppXTkvG2dQF9BC95q1RbGaG60rrT3WIEFLB3XFq00JSgwBnUxZvz4a2OXUiTffMewxbhvgDcHCs1AoTlQaE4UhsndcRKI6L-uQfGiNMUfHeZYhg</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Dai, Qi I.</creator><creator>Liu, Qin S.</creator><creator>Gan, Hui U. I.</creator><creator>Weng Cho Chew</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><author>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characteristic mode</topic><topic>closed surface</topic><topic>combined field integral equation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Integral equations</topic><topic>Magnetic resonance</topic><topic>Null space</topic><topic>Surface impedance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Qi I.</creatorcontrib><creatorcontrib>Liu, Qin S.</creatorcontrib><creatorcontrib>Gan, Hui U. I.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Qi I.</au><au>Liu, Qin S.</au><au>Gan, Hui U. I.</au><au>Weng Cho Chew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Field Integral Equation-Based Theory of Characteristic Mode</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-09</date><risdate>2015</risdate><volume>63</volume><issue>9</issue><spage>3973</spage><epage>3981</epage><pages>3973-3981</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2452938</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3973-3981
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_7150368
source IEEE Electronic Library (IEL)
subjects Characteristic mode
closed surface
combined field integral equation
Eigenvalues and eigenfunctions
Integral equations
Magnetic resonance
Null space
Surface impedance
title Combined Field Integral Equation-Based Theory of Characteristic Mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Field%20Integral%20Equation-Based%20Theory%20of%20Characteristic%20Mode&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dai,%20Qi%20I.&rft.date=2015-09&rft.volume=63&rft.issue=9&rft.spage=3973&rft.epage=3981&rft.pages=3973-3981&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2452938&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_2015_2452938%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7150368&rfr_iscdi=true