Combined Field Integral Equation-Based Theory of Characteristic Mode
Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remov...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2015-09, Vol.63 (9), p.3973-3981 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3981 |
---|---|
container_issue | 9 |
container_start_page | 3973 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 63 |
creator | Dai, Qi I. Liu, Qin S. Gan, Hui U. I. Weng Cho Chew |
description | Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces. |
doi_str_mv | 10.1109/TAP.2015.2452938 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7150368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7150368</ieee_id><sourcerecordid>10_1109_TAP_2015_2452938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqWwI7HkBVJ8HTt2xhJaqFQEQ5HYohv7mhq1Ddhh6NuTqhXT0dH5GT7GboFPAHh1v5q-TQQHNRFSiaowZ2wESplcCAHnbMQ5mLwS5cclu0rpa7DSSDlij3W3bcOOXDYPtHHZYtfTZ8RNNvv5xT50u_wB05Cu1tTFfdb5rF5jRNtTDKkPNnvpHF2zC4-bRDcnHbP3-WxVP-fL16dFPV3mtuCqz1WJJGSppXTkvG2dQF9BC95q1RbGaG60rrT3WIEFLB3XFq00JSgwBnUxZvz4a2OXUiTffMewxbhvgDcHCs1AoTlQaE4UhsndcRKI6L-uQfGiNMUfHeZYhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</creator><creatorcontrib>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</creatorcontrib><description>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2452938</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Characteristic mode ; closed surface ; combined field integral equation ; Eigenvalues and eigenfunctions ; Integral equations ; Magnetic resonance ; Null space ; Surface impedance</subject><ispartof>IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3973-3981</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</citedby><cites>FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7150368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7150368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Qi I.</creatorcontrib><creatorcontrib>Liu, Qin S.</creatorcontrib><creatorcontrib>Gan, Hui U. I.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</description><subject>Characteristic mode</subject><subject>closed surface</subject><subject>combined field integral equation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Integral equations</subject><subject>Magnetic resonance</subject><subject>Null space</subject><subject>Surface impedance</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1OwzAUhS0EEqWwI7HkBVJ8HTt2xhJaqFQEQ5HYohv7mhq1Ddhh6NuTqhXT0dH5GT7GboFPAHh1v5q-TQQHNRFSiaowZ2wESplcCAHnbMQ5mLwS5cclu0rpa7DSSDlij3W3bcOOXDYPtHHZYtfTZ8RNNvv5xT50u_wB05Cu1tTFfdb5rF5jRNtTDKkPNnvpHF2zC4-bRDcnHbP3-WxVP-fL16dFPV3mtuCqz1WJJGSppXTkvG2dQF9BC95q1RbGaG60rrT3WIEFLB3XFq00JSgwBnUxZvz4a2OXUiTffMewxbhvgDcHCs1AoTlQaE4UhsndcRKI6L-uQfGiNMUfHeZYhg</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Dai, Qi I.</creator><creator>Liu, Qin S.</creator><creator>Gan, Hui U. I.</creator><creator>Weng Cho Chew</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Combined Field Integral Equation-Based Theory of Characteristic Mode</title><author>Dai, Qi I. ; Liu, Qin S. ; Gan, Hui U. I. ; Weng Cho Chew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-56ae246744dedfcbd2af91b1fc75b3887087797ffa91c1a6d07cac48615188a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characteristic mode</topic><topic>closed surface</topic><topic>combined field integral equation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Integral equations</topic><topic>Magnetic resonance</topic><topic>Null space</topic><topic>Surface impedance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Qi I.</creatorcontrib><creatorcontrib>Liu, Qin S.</creatorcontrib><creatorcontrib>Gan, Hui U. I.</creatorcontrib><creatorcontrib>Weng Cho Chew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Qi I.</au><au>Liu, Qin S.</au><au>Gan, Hui U. I.</au><au>Weng Cho Chew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Field Integral Equation-Based Theory of Characteristic Mode</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-09</date><risdate>2015</risdate><volume>63</volume><issue>9</issue><spage>3973</spage><epage>3981</epage><pages>3973-3981</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Conventional electric field integral equation-based theory is susceptible to the spurious internal resonance problem when the characteristic modes (CMs) of closed perfectly conducting objects are computed iteratively. In this paper, we present a combined field integral equation-based theory to remove the difficulty of internal resonances in CMs analysis. The electric and magnetic field integral operators are shown to share a common set of nontrivial characteristic pairs (values and modes), leading to a generalized eigenvalue problem which is immune to the internal resonance corruption. Numerical results are presented to validate the proposed formulation. This work may offer efficient solutions to CM analysis which involves electrically large closed surfaces.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2452938</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3973-3981 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_7150368 |
source | IEEE Electronic Library (IEL) |
subjects | Characteristic mode closed surface combined field integral equation Eigenvalues and eigenfunctions Integral equations Magnetic resonance Null space Surface impedance |
title | Combined Field Integral Equation-Based Theory of Characteristic Mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Field%20Integral%20Equation-Based%20Theory%20of%20Characteristic%20Mode&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Dai,%20Qi%20I.&rft.date=2015-09&rft.volume=63&rft.issue=9&rft.spage=3973&rft.epage=3981&rft.pages=3973-3981&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2452938&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_2015_2452938%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7150368&rfr_iscdi=true |