Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks
Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to creat...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2015-09, Vol.12 (3), p.496-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 3 |
container_start_page | 496 |
container_title | IEEE eTransactions on network and service management |
container_volume | 12 |
creator | Illiano, Vittorio P. Lupu, Emil C. |
description | Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context. |
doi_str_mv | 10.1109/TNSM.2015.2448656 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7131545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7131545</ieee_id><sourcerecordid>10_1109_TNSM_2015_2448656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</originalsourceid><addsrcrecordid>eNpN0MtOwzAQBVALgUQpfABi4x9I8SN24iVqS6nUx6JFLCMnniCXYCPbgPh7GjVCrGakuXcWB6FbSiaUEnW_3-zWE0aomLA8L6WQZ2hEFWdZLnhx_m-_RFcxHggRJVVshLYzSNAk617xWne2sf4z4plOGi_doT94F7F1eP4FLuEh7B1-sQE6iBHvwEUf8AbStw9v8RpdtLqLcDPMMXp-nO-nT9lqu1hOH1ZZw6RImWaKgtGUQykkAwmCS86YUtqUtTSFJnVudKsNZ7wlhhuRN3XNpGyh4GWh-RjR098m-BgDtNVHsO86_FSUVL1I1YtUvUg1iBw7d6eOBYC_fEE5FUeZXxEYXiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Illiano, Vittorio P. ; Lupu, Emil C.</creator><creatorcontrib>Illiano, Vittorio P. ; Lupu, Emil C.</creatorcontrib><description>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2015.2448656</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Ad-Hoc and sensor networks ; Correlation ; Data models ; Estimation ; Event detection ; Mining and statistical methods ; Noise ; Security management</subject><ispartof>IEEE eTransactions on network and service management, 2015-09, Vol.12 (3), p.496-510</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</citedby><cites>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7131545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7131545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Illiano, Vittorio P.</creatorcontrib><creatorcontrib>Lupu, Emil C.</creatorcontrib><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</description><subject>Accuracy</subject><subject>Ad-Hoc and sensor networks</subject><subject>Correlation</subject><subject>Data models</subject><subject>Estimation</subject><subject>Event detection</subject><subject>Mining and statistical methods</subject><subject>Noise</subject><subject>Security management</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQBVALgUQpfABi4x9I8SN24iVqS6nUx6JFLCMnniCXYCPbgPh7GjVCrGakuXcWB6FbSiaUEnW_3-zWE0aomLA8L6WQZ2hEFWdZLnhx_m-_RFcxHggRJVVshLYzSNAk617xWne2sf4z4plOGi_doT94F7F1eP4FLuEh7B1-sQE6iBHvwEUf8AbStw9v8RpdtLqLcDPMMXp-nO-nT9lqu1hOH1ZZw6RImWaKgtGUQykkAwmCS86YUtqUtTSFJnVudKsNZ7wlhhuRN3XNpGyh4GWh-RjR098m-BgDtNVHsO86_FSUVL1I1YtUvUg1iBw7d6eOBYC_fEE5FUeZXxEYXiI</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Illiano, Vittorio P.</creator><creator>Lupu, Emil C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><author>Illiano, Vittorio P. ; Lupu, Emil C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Ad-Hoc and sensor networks</topic><topic>Correlation</topic><topic>Data models</topic><topic>Estimation</topic><topic>Event detection</topic><topic>Mining and statistical methods</topic><topic>Noise</topic><topic>Security management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illiano, Vittorio P.</creatorcontrib><creatorcontrib>Lupu, Emil C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Illiano, Vittorio P.</au><au>Lupu, Emil C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2015-09</date><risdate>2015</risdate><volume>12</volume><issue>3</issue><spage>496</spage><epage>510</epage><pages>496-510</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2015.2448656</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2015-09, Vol.12 (3), p.496-510 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_ieee_primary_7131545 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Ad-Hoc and sensor networks Correlation Data models Estimation Event detection Mining and statistical methods Noise Security management |
title | Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Malicious%20Data%20Injections%20in%20Event%20Detection%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Illiano,%20Vittorio%20P.&rft.date=2015-09&rft.volume=12&rft.issue=3&rft.spage=496&rft.epage=510&rft.pages=496-510&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2015.2448656&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2015_2448656%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7131545&rfr_iscdi=true |