Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks

Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to creat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2015-09, Vol.12 (3), p.496-510
Hauptverfasser: Illiano, Vittorio P., Lupu, Emil C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 3
container_start_page 496
container_title IEEE eTransactions on network and service management
container_volume 12
creator Illiano, Vittorio P.
Lupu, Emil C.
description Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.
doi_str_mv 10.1109/TNSM.2015.2448656
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7131545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7131545</ieee_id><sourcerecordid>10_1109_TNSM_2015_2448656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</originalsourceid><addsrcrecordid>eNpN0MtOwzAQBVALgUQpfABi4x9I8SN24iVqS6nUx6JFLCMnniCXYCPbgPh7GjVCrGakuXcWB6FbSiaUEnW_3-zWE0aomLA8L6WQZ2hEFWdZLnhx_m-_RFcxHggRJVVshLYzSNAk617xWne2sf4z4plOGi_doT94F7F1eP4FLuEh7B1-sQE6iBHvwEUf8AbStw9v8RpdtLqLcDPMMXp-nO-nT9lqu1hOH1ZZw6RImWaKgtGUQykkAwmCS86YUtqUtTSFJnVudKsNZ7wlhhuRN3XNpGyh4GWh-RjR098m-BgDtNVHsO86_FSUVL1I1YtUvUg1iBw7d6eOBYC_fEE5FUeZXxEYXiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Illiano, Vittorio P. ; Lupu, Emil C.</creator><creatorcontrib>Illiano, Vittorio P. ; Lupu, Emil C.</creatorcontrib><description>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2015.2448656</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Ad-Hoc and sensor networks ; Correlation ; Data models ; Estimation ; Event detection ; Mining and statistical methods ; Noise ; Security management</subject><ispartof>IEEE eTransactions on network and service management, 2015-09, Vol.12 (3), p.496-510</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</citedby><cites>FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7131545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7131545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Illiano, Vittorio P.</creatorcontrib><creatorcontrib>Lupu, Emil C.</creatorcontrib><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</description><subject>Accuracy</subject><subject>Ad-Hoc and sensor networks</subject><subject>Correlation</subject><subject>Data models</subject><subject>Estimation</subject><subject>Event detection</subject><subject>Mining and statistical methods</subject><subject>Noise</subject><subject>Security management</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQBVALgUQpfABi4x9I8SN24iVqS6nUx6JFLCMnniCXYCPbgPh7GjVCrGakuXcWB6FbSiaUEnW_3-zWE0aomLA8L6WQZ2hEFWdZLnhx_m-_RFcxHggRJVVshLYzSNAk617xWne2sf4z4plOGi_doT94F7F1eP4FLuEh7B1-sQE6iBHvwEUf8AbStw9v8RpdtLqLcDPMMXp-nO-nT9lqu1hOH1ZZw6RImWaKgtGUQykkAwmCS86YUtqUtTSFJnVudKsNZ7wlhhuRN3XNpGyh4GWh-RjR098m-BgDtNVHsO86_FSUVL1I1YtUvUg1iBw7d6eOBYC_fEE5FUeZXxEYXiI</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Illiano, Vittorio P.</creator><creator>Lupu, Emil C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</title><author>Illiano, Vittorio P. ; Lupu, Emil C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-a291eda13e8562e6e53632299ad8b6d7a0b4dafad323f0d3d54cbb266fe7387a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Ad-Hoc and sensor networks</topic><topic>Correlation</topic><topic>Data models</topic><topic>Estimation</topic><topic>Event detection</topic><topic>Mining and statistical methods</topic><topic>Noise</topic><topic>Security management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illiano, Vittorio P.</creatorcontrib><creatorcontrib>Lupu, Emil C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Illiano, Vittorio P.</au><au>Lupu, Emil C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2015-09</date><risdate>2015</risdate><volume>12</volume><issue>3</issue><spage>496</spage><epage>510</epage><pages>496-510</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Wireless sensor networks (WSNs) are vulnerable and can be maliciously compromised, either physically or remotely, with potentially devastating effects. When sensor networks are used to detect the occurrence of events such as fires, intruders, or heart attacks, malicious data can be injected to create fake events, and thus trigger an undesired response, or to mask the occurrence of actual events. We propose a novel algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors even when they collude in the attack. We also propose a methodology to apply this algorithm in different application contexts and evaluate its results on three different datasets drawn from distinct WSN deployments. This leads us to identify different tradeoffs in the design of such algorithms and how they are influenced by the application context.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2015.2448656</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2015-09, Vol.12 (3), p.496-510
issn 1932-4537
1932-4537
language eng
recordid cdi_ieee_primary_7131545
source IEEE Electronic Library (IEL)
subjects Accuracy
Ad-Hoc and sensor networks
Correlation
Data models
Estimation
Event detection
Mining and statistical methods
Noise
Security management
title Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Malicious%20Data%20Injections%20in%20Event%20Detection%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Illiano,%20Vittorio%20P.&rft.date=2015-09&rft.volume=12&rft.issue=3&rft.spage=496&rft.epage=510&rft.pages=496-510&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2015.2448656&rft_dat=%3Ccrossref_RIE%3E10_1109_TNSM_2015_2448656%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7131545&rfr_iscdi=true