Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach
Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2016-05, Vol.31 (3), p.1799-1808 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1808 |
---|---|
container_issue | 3 |
container_start_page | 1799 |
container_title | IEEE transactions on power systems |
container_volume | 31 |
creator | Khalid, Haris M. Peng, Jimmy C.-H |
description | Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF. |
doi_str_mv | 10.1109/TPWRS.2015.2441109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7127067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7127067</ieee_id><sourcerecordid>4046973171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPKOo4Tm1upykMqKoICR8vZOtRtHq2dSvDvcWnFaaWdnZ3RR8glhQGlIG9mL5-vb4MEKB8kabpbHZEe5VzEkOXymPRACB4LyeGUnHm_BIAsCD3yMXMaV7b5isaVwc61tcGFbizqKpp6tFWlO9s2_jYaNtG4CRKaefSsv229reOJXZnKLtp2Ht1pH4Theu1ajYtzclLqypuLw-yT9_vxbPQYT6YPT6PhJMZE8i5OhWZSY4kFFIIJWSA1JZ0j46E25yUtcsZMiiVoLTPMk5Jl3FAAoyVNcsP65Hr_N8RutsZ3atluXRMiFc1FTlOZQRKukv0VutZ7Z0q1drbW7kdRUDtY6o-f2vFTB37BdLU3WWPMvyEPsaEb-wV8p2zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787149602</pqid></control><display><type>article</type><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Khalid, Haris M. ; Peng, Jimmy C.-H</creator><creatorcontrib>Khalid, Haris M. ; Peng, Jimmy C.-H</creatorcontrib><description>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2441109</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Augmented Lagrangian ; Convergence ; Correlation ; distributed estimation ; inter-area oscillation modes ; Kalman filters ; Maximum likelihood estimation ; maximum-likelihood ; Monte Carlo simulation ; Noise ; oscillations ; Oscillators ; phasor measurement unit (PMU) ; power system monitoring ; power system stability ; real-time measurements ; situational awareness ; synchrophasor measurement ; wide-area monitoring system (WAMS)</subject><ispartof>IEEE transactions on power systems, 2016-05, Vol.31 (3), p.1799-1808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</citedby><cites>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7127067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7127067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalid, Haris M.</creatorcontrib><creatorcontrib>Peng, Jimmy C.-H</creatorcontrib><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</description><subject>Algorithms</subject><subject>Augmented Lagrangian</subject><subject>Convergence</subject><subject>Correlation</subject><subject>distributed estimation</subject><subject>inter-area oscillation modes</subject><subject>Kalman filters</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>oscillations</subject><subject>Oscillators</subject><subject>phasor measurement unit (PMU)</subject><subject>power system monitoring</subject><subject>power system stability</subject><subject>real-time measurements</subject><subject>situational awareness</subject><subject>synchrophasor measurement</subject><subject>wide-area monitoring system (WAMS)</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPKOo4Tm1upykMqKoICR8vZOtRtHq2dSvDvcWnFaaWdnZ3RR8glhQGlIG9mL5-vb4MEKB8kabpbHZEe5VzEkOXymPRACB4LyeGUnHm_BIAsCD3yMXMaV7b5isaVwc61tcGFbizqKpp6tFWlO9s2_jYaNtG4CRKaefSsv229reOJXZnKLtp2Ht1pH4Theu1ajYtzclLqypuLw-yT9_vxbPQYT6YPT6PhJMZE8i5OhWZSY4kFFIIJWSA1JZ0j46E25yUtcsZMiiVoLTPMk5Jl3FAAoyVNcsP65Hr_N8RutsZ3atluXRMiFc1FTlOZQRKukv0VutZ7Z0q1drbW7kdRUDtY6o-f2vFTB37BdLU3WWPMvyEPsaEb-wV8p2zQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Khalid, Haris M.</creator><creator>Peng, Jimmy C.-H</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201605</creationdate><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><author>Khalid, Haris M. ; Peng, Jimmy C.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Augmented Lagrangian</topic><topic>Convergence</topic><topic>Correlation</topic><topic>distributed estimation</topic><topic>inter-area oscillation modes</topic><topic>Kalman filters</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>oscillations</topic><topic>Oscillators</topic><topic>phasor measurement unit (PMU)</topic><topic>power system monitoring</topic><topic>power system stability</topic><topic>real-time measurements</topic><topic>situational awareness</topic><topic>synchrophasor measurement</topic><topic>wide-area monitoring system (WAMS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Haris M.</creatorcontrib><creatorcontrib>Peng, Jimmy C.-H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalid, Haris M.</au><au>Peng, Jimmy C.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-05</date><risdate>2016</risdate><volume>31</volume><issue>3</issue><spage>1799</spage><epage>1808</epage><pages>1799-1808</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2441109</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2016-05, Vol.31 (3), p.1799-1808 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_7127067 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Augmented Lagrangian Convergence Correlation distributed estimation inter-area oscillation modes Kalman filters Maximum likelihood estimation maximum-likelihood Monte Carlo simulation Noise oscillations Oscillators phasor measurement unit (PMU) power system monitoring power system stability real-time measurements situational awareness synchrophasor measurement wide-area monitoring system (WAMS) |
title | Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Electromechanical%20Oscillations:%20An%20Enhanced%20Maximum-Likelihood%20Based%20Approach&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Khalid,%20Haris%20M.&rft.date=2016-05&rft.volume=31&rft.issue=3&rft.spage=1799&rft.epage=1808&rft.pages=1799-1808&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2441109&rft_dat=%3Cproquest_RIE%3E4046973171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787149602&rft_id=info:pmid/&rft_ieee_id=7127067&rfr_iscdi=true |