Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach

Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2016-05, Vol.31 (3), p.1799-1808
Hauptverfasser: Khalid, Haris M., Peng, Jimmy C.-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1808
container_issue 3
container_start_page 1799
container_title IEEE transactions on power systems
container_volume 31
creator Khalid, Haris M.
Peng, Jimmy C.-H
description Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.
doi_str_mv 10.1109/TPWRS.2015.2441109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7127067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7127067</ieee_id><sourcerecordid>4046973171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPKOo4Tm1upykMqKoICR8vZOtRtHq2dSvDvcWnFaaWdnZ3RR8glhQGlIG9mL5-vb4MEKB8kabpbHZEe5VzEkOXymPRACB4LyeGUnHm_BIAsCD3yMXMaV7b5isaVwc61tcGFbizqKpp6tFWlO9s2_jYaNtG4CRKaefSsv229reOJXZnKLtp2Ht1pH4Theu1ajYtzclLqypuLw-yT9_vxbPQYT6YPT6PhJMZE8i5OhWZSY4kFFIIJWSA1JZ0j46E25yUtcsZMiiVoLTPMk5Jl3FAAoyVNcsP65Hr_N8RutsZ3atluXRMiFc1FTlOZQRKukv0VutZ7Z0q1drbW7kdRUDtY6o-f2vFTB37BdLU3WWPMvyEPsaEb-wV8p2zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787149602</pqid></control><display><type>article</type><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Khalid, Haris M. ; Peng, Jimmy C.-H</creator><creatorcontrib>Khalid, Haris M. ; Peng, Jimmy C.-H</creatorcontrib><description>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2441109</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Augmented Lagrangian ; Convergence ; Correlation ; distributed estimation ; inter-area oscillation modes ; Kalman filters ; Maximum likelihood estimation ; maximum-likelihood ; Monte Carlo simulation ; Noise ; oscillations ; Oscillators ; phasor measurement unit (PMU) ; power system monitoring ; power system stability ; real-time measurements ; situational awareness ; synchrophasor measurement ; wide-area monitoring system (WAMS)</subject><ispartof>IEEE transactions on power systems, 2016-05, Vol.31 (3), p.1799-1808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</citedby><cites>FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7127067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7127067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalid, Haris M.</creatorcontrib><creatorcontrib>Peng, Jimmy C.-H</creatorcontrib><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</description><subject>Algorithms</subject><subject>Augmented Lagrangian</subject><subject>Convergence</subject><subject>Correlation</subject><subject>distributed estimation</subject><subject>inter-area oscillation modes</subject><subject>Kalman filters</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood</subject><subject>Monte Carlo simulation</subject><subject>Noise</subject><subject>oscillations</subject><subject>Oscillators</subject><subject>phasor measurement unit (PMU)</subject><subject>power system monitoring</subject><subject>power system stability</subject><subject>real-time measurements</subject><subject>situational awareness</subject><subject>synchrophasor measurement</subject><subject>wide-area monitoring system (WAMS)</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASiXPKOo4Tm1upykMqKoICR8vZOtRtHq2dSvDvcWnFaaWdnZ3RR8glhQGlIG9mL5-vb4MEKB8kabpbHZEe5VzEkOXymPRACB4LyeGUnHm_BIAsCD3yMXMaV7b5isaVwc61tcGFbizqKpp6tFWlO9s2_jYaNtG4CRKaefSsv229reOJXZnKLtp2Ht1pH4Theu1ajYtzclLqypuLw-yT9_vxbPQYT6YPT6PhJMZE8i5OhWZSY4kFFIIJWSA1JZ0j46E25yUtcsZMiiVoLTPMk5Jl3FAAoyVNcsP65Hr_N8RutsZ3atluXRMiFc1FTlOZQRKukv0VutZ7Z0q1drbW7kdRUDtY6o-f2vFTB37BdLU3WWPMvyEPsaEb-wV8p2zQ</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Khalid, Haris M.</creator><creator>Peng, Jimmy C.-H</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201605</creationdate><title>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</title><author>Khalid, Haris M. ; Peng, Jimmy C.-H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-48a39acfcb0b8389bc1ef1dc3506755f1b733e4cf0aa96c72f365e100ea9127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Augmented Lagrangian</topic><topic>Convergence</topic><topic>Correlation</topic><topic>distributed estimation</topic><topic>inter-area oscillation modes</topic><topic>Kalman filters</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood</topic><topic>Monte Carlo simulation</topic><topic>Noise</topic><topic>oscillations</topic><topic>Oscillators</topic><topic>phasor measurement unit (PMU)</topic><topic>power system monitoring</topic><topic>power system stability</topic><topic>real-time measurements</topic><topic>situational awareness</topic><topic>synchrophasor measurement</topic><topic>wide-area monitoring system (WAMS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Haris M.</creatorcontrib><creatorcontrib>Peng, Jimmy C.-H</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalid, Haris M.</au><au>Peng, Jimmy C.-H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-05</date><risdate>2016</risdate><volume>31</volume><issue>3</issue><spage>1799</spage><epage>1808</epage><pages>1799-1808</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Lightly damped electromechanical oscillations are major operating concerns if failed to be detected at an early stage. This paper improved the existing extended complex Kalman filter (ECKF) technique of tracking electromechanical oscillations using synchrophasor measurements. The proposed algorithm adopted a distributed architecture for estimating oscillatory parameters from local substations. The novelty lies in handling maximum likelihood (ML) to enhance the convergence property in tracking multiple modes using an expectation maximization (EM) approach. This was achieved by encapsulating the augmented Lagrangian (AL) in the maximization step of the EM algorithm, which utilized a novel ECKF-based smoother (ECKS). Performance evaluations were conducted using IEEE 68-bus system and recorded synchrophasor measurements collected from the New Zealand grid. Random noise variance test cases were generated to examine the performance of the proposed algorithm. To ensure the robustness to random noisy conditions, the algorithm was tested based on exhaustive Monte Carlo simulations. Comparisons were made with the existing Prony analysis (PA), Kalman filter (KF), and distributed EM-based FB-KLPF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2441109</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2016-05, Vol.31 (3), p.1799-1808
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_7127067
source IEEE Electronic Library (IEL)
subjects Algorithms
Augmented Lagrangian
Convergence
Correlation
distributed estimation
inter-area oscillation modes
Kalman filters
Maximum likelihood estimation
maximum-likelihood
Monte Carlo simulation
Noise
oscillations
Oscillators
phasor measurement unit (PMU)
power system monitoring
power system stability
real-time measurements
situational awareness
synchrophasor measurement
wide-area monitoring system (WAMS)
title Tracking Electromechanical Oscillations: An Enhanced Maximum-Likelihood Based Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Electromechanical%20Oscillations:%20An%20Enhanced%20Maximum-Likelihood%20Based%20Approach&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Khalid,%20Haris%20M.&rft.date=2016-05&rft.volume=31&rft.issue=3&rft.spage=1799&rft.epage=1808&rft.pages=1799-1808&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2441109&rft_dat=%3Cproquest_RIE%3E4046973171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787149602&rft_id=info:pmid/&rft_ieee_id=7127067&rfr_iscdi=true