A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria
This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-int...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2016-02, Vol.61 (2), p.544-549 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | 2 |
container_start_page | 544 |
container_title | IEEE transactions on automatic control |
container_volume | 61 |
creator | Nygren, Johannes Pelckmans, Kristiaan |
description | This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system. |
doi_str_mv | 10.1109/TAC.2015.2446311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7124452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7124452</ieee_id><sourcerecordid>3939223351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8FX-3MpU3aPJbOXzDRh-prSLurZm5rTVJl_70ZlUHgyPc-dxwfQi6BzgCovK2KcsYo8BlLU5EAHJEJcJ7HjLPkmEwohTyWLBen5My5VfiKNIUJWRTR3FhsfPRqu66NwvOfGDLXWPQYV2aD0fOw9uZHW6M9RqWxzRojvV1Gldv1X2YbldZ4DN1zctLqtcOL_zolb_d3VfkYL14enspiETcsBx9nCWuWjGkqmyahqc6RZoxzCCHQRGOtaS45l-FknWjBBJNtrYVMmAxZnSVTcjPudb_YD7Xqrdlou1OdNmpu3gvV2Q81DIoJnqcy4Ncj3tvue0Dn1aob7DZcqCATIKgEgEDRkWps55zF9rAWqNorVkGx2itW_4rDyNU4YhDxgGcQ-sH6H4kBdPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761609111</pqid></control><display><type>article</type><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><source>IEEE Electronic Library (IEL)</source><creator>Nygren, Johannes ; Pelckmans, Kristiaan</creator><creatorcontrib>Nygren, Johannes ; Pelckmans, Kristiaan</creatorcontrib><description>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2446311</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Closed loop systems ; Economic models ; Eigenvalues and eigenfunctions ; MIMO ; model predictive control ; Nonlinear systems ; Predictive control ; stability ; Stability criteria ; System theory</subject><ispartof>IEEE transactions on automatic control, 2016-02, Vol.61 (2), p.544-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7124452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7124452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265849$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nygren, Johannes</creatorcontrib><creatorcontrib>Pelckmans, Kristiaan</creatorcontrib><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</description><subject>Asymptotic stability</subject><subject>Closed loop systems</subject><subject>Economic models</subject><subject>Eigenvalues and eigenfunctions</subject><subject>MIMO</subject><subject>model predictive control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>stability</subject><subject>Stability criteria</subject><subject>System theory</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8FX-3MpU3aPJbOXzDRh-prSLurZm5rTVJl_70ZlUHgyPc-dxwfQi6BzgCovK2KcsYo8BlLU5EAHJEJcJ7HjLPkmEwohTyWLBen5My5VfiKNIUJWRTR3FhsfPRqu66NwvOfGDLXWPQYV2aD0fOw9uZHW6M9RqWxzRojvV1Gldv1X2YbldZ4DN1zctLqtcOL_zolb_d3VfkYL14enspiETcsBx9nCWuWjGkqmyahqc6RZoxzCCHQRGOtaS45l-FknWjBBJNtrYVMmAxZnSVTcjPudb_YD7Xqrdlou1OdNmpu3gvV2Q81DIoJnqcy4Ncj3tvue0Dn1aob7DZcqCATIKgEgEDRkWps55zF9rAWqNorVkGx2itW_4rDyNU4YhDxgGcQ-sH6H4kBdPU</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Nygren, Johannes</creator><creator>Pelckmans, Kristiaan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20160201</creationdate><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><author>Nygren, Johannes ; Pelckmans, Kristiaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic stability</topic><topic>Closed loop systems</topic><topic>Economic models</topic><topic>Eigenvalues and eigenfunctions</topic><topic>MIMO</topic><topic>model predictive control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>stability</topic><topic>Stability criteria</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nygren, Johannes</creatorcontrib><creatorcontrib>Pelckmans, Kristiaan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nygren, Johannes</au><au>Pelckmans, Kristiaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>61</volume><issue>2</issue><spage>544</spage><epage>549</epage><pages>544-549</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2446311</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2016-02, Vol.61 (2), p.544-549 |
issn | 0018-9286 1558-2523 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7124452 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic stability Closed loop systems Economic models Eigenvalues and eigenfunctions MIMO model predictive control Nonlinear systems Predictive control stability Stability criteria System theory |
title | A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Direct%20Proof%20of%20the%20Discrete-Time%20Multivariate%20Circle%20and%20Tsypkin%20Criteria&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Nygren,%20Johannes&rft.date=2016-02-01&rft.volume=61&rft.issue=2&rft.spage=544&rft.epage=549&rft.pages=544-549&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2446311&rft_dat=%3Cproquest_RIE%3E3939223351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761609111&rft_id=info:pmid/&rft_ieee_id=7124452&rfr_iscdi=true |