A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria

This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2016-02, Vol.61 (2), p.544-549
Hauptverfasser: Nygren, Johannes, Pelckmans, Kristiaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 2
container_start_page 544
container_title IEEE transactions on automatic control
container_volume 61
creator Nygren, Johannes
Pelckmans, Kristiaan
description This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.
doi_str_mv 10.1109/TAC.2015.2446311
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7124452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7124452</ieee_id><sourcerecordid>3939223351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8FX-3MpU3aPJbOXzDRh-prSLurZm5rTVJl_70ZlUHgyPc-dxwfQi6BzgCovK2KcsYo8BlLU5EAHJEJcJ7HjLPkmEwohTyWLBen5My5VfiKNIUJWRTR3FhsfPRqu66NwvOfGDLXWPQYV2aD0fOw9uZHW6M9RqWxzRojvV1Gldv1X2YbldZ4DN1zctLqtcOL_zolb_d3VfkYL14enspiETcsBx9nCWuWjGkqmyahqc6RZoxzCCHQRGOtaS45l-FknWjBBJNtrYVMmAxZnSVTcjPudb_YD7Xqrdlou1OdNmpu3gvV2Q81DIoJnqcy4Ncj3tvue0Dn1aob7DZcqCATIKgEgEDRkWps55zF9rAWqNorVkGx2itW_4rDyNU4YhDxgGcQ-sH6H4kBdPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761609111</pqid></control><display><type>article</type><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><source>IEEE Electronic Library (IEL)</source><creator>Nygren, Johannes ; Pelckmans, Kristiaan</creator><creatorcontrib>Nygren, Johannes ; Pelckmans, Kristiaan</creatorcontrib><description>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2446311</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Closed loop systems ; Economic models ; Eigenvalues and eigenfunctions ; MIMO ; model predictive control ; Nonlinear systems ; Predictive control ; stability ; Stability criteria ; System theory</subject><ispartof>IEEE transactions on automatic control, 2016-02, Vol.61 (2), p.544-549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7124452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7124452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265849$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nygren, Johannes</creatorcontrib><creatorcontrib>Pelckmans, Kristiaan</creatorcontrib><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</description><subject>Asymptotic stability</subject><subject>Closed loop systems</subject><subject>Economic models</subject><subject>Eigenvalues and eigenfunctions</subject><subject>MIMO</subject><subject>model predictive control</subject><subject>Nonlinear systems</subject><subject>Predictive control</subject><subject>stability</subject><subject>Stability criteria</subject><subject>System theory</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8FX-3MpU3aPJbOXzDRh-prSLurZm5rTVJl_70ZlUHgyPc-dxwfQi6BzgCovK2KcsYo8BlLU5EAHJEJcJ7HjLPkmEwohTyWLBen5My5VfiKNIUJWRTR3FhsfPRqu66NwvOfGDLXWPQYV2aD0fOw9uZHW6M9RqWxzRojvV1Gldv1X2YbldZ4DN1zctLqtcOL_zolb_d3VfkYL14enspiETcsBx9nCWuWjGkqmyahqc6RZoxzCCHQRGOtaS45l-FknWjBBJNtrYVMmAxZnSVTcjPudb_YD7Xqrdlou1OdNmpu3gvV2Q81DIoJnqcy4Ncj3tvue0Dn1aob7DZcqCATIKgEgEDRkWps55zF9rAWqNorVkGx2itW_4rDyNU4YhDxgGcQ-sH6H4kBdPU</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Nygren, Johannes</creator><creator>Pelckmans, Kristiaan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20160201</creationdate><title>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</title><author>Nygren, Johannes ; Pelckmans, Kristiaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-732cd22a09cc304a8e072551cd2103aeba089559018a3a62629fba69329901b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic stability</topic><topic>Closed loop systems</topic><topic>Economic models</topic><topic>Eigenvalues and eigenfunctions</topic><topic>MIMO</topic><topic>model predictive control</topic><topic>Nonlinear systems</topic><topic>Predictive control</topic><topic>stability</topic><topic>Stability criteria</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nygren, Johannes</creatorcontrib><creatorcontrib>Pelckmans, Kristiaan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nygren, Johannes</au><au>Pelckmans, Kristiaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>61</volume><issue>2</issue><spage>544</spage><epage>549</epage><pages>544-549</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note presents a new proof of the circle criterion for multivariate, discrete-time systems with time-varying feedback nonlinearities. A new proof for the multivariate Tsypkin criterion for time-invariant monotonic feedback nonlinearities is derived as well. Both integrator- and non-integrator systems are considered. The proofs are direct in the sense that they do not resort to any existing result in systems theory, such as Lyapunov theory, passivity theory or the small-gain theorem. Instead, the proofs refer to the asymptotic properties of block-Toeplitz matrices. One major advantage of the new proof is that it elegantly handles integrator systems without resorting to loop transformation/pole shifting techniques. Additionally, less conservative stability bounds are derived by making stronger assumptions on the sector bound conditions on the feedback nonlinearities. In particular, it is exemplified how this technique relaxes stability conditions of (i) a model predictive control (MPC) rule and (ii) an integrator system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2446311</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2016-02, Vol.61 (2), p.544-549
issn 0018-9286
1558-2523
1558-2523
language eng
recordid cdi_ieee_primary_7124452
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Closed loop systems
Economic models
Eigenvalues and eigenfunctions
MIMO
model predictive control
Nonlinear systems
Predictive control
stability
Stability criteria
System theory
title A Direct Proof of the Discrete-Time Multivariate Circle and Tsypkin Criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Direct%20Proof%20of%20the%20Discrete-Time%20Multivariate%20Circle%20and%20Tsypkin%20Criteria&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Nygren,%20Johannes&rft.date=2016-02-01&rft.volume=61&rft.issue=2&rft.spage=544&rft.epage=549&rft.pages=544-549&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2446311&rft_dat=%3Cproquest_RIE%3E3939223351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761609111&rft_id=info:pmid/&rft_ieee_id=7124452&rfr_iscdi=true