Efficient Reversible Data Hiding Based on Multiple Histograms Modification

Prediction-error expansion (PEE) is the most successful reversible data hiding (RDH) technique, and existing PEE-based RDH methods are mainly based on the modification of one- or two-dimensional prediction-error histogram (PEH). The two-dimensional PEH-based methods perform generally better than tho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2015-09, Vol.10 (9), p.2016-2027
Hauptverfasser: Xiaolong Li, Weiming Zhang, Xinlu Gui, Bin Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 9
container_start_page 2016
container_title IEEE transactions on information forensics and security
container_volume 10
creator Xiaolong Li
Weiming Zhang
Xinlu Gui
Bin Yang
description Prediction-error expansion (PEE) is the most successful reversible data hiding (RDH) technique, and existing PEE-based RDH methods are mainly based on the modification of one- or two-dimensional prediction-error histogram (PEH). The two-dimensional PEH-based methods perform generally better than those based on one-dimensional PEH; however, their performance is still unsatisfactory since the PEH modification manner is fixed and independent of image content. In this paper, we propose a new RDH method based on PEE for multiple histograms. Unlike the previous methods, we consider in this paper a sequence of histograms and devise a new embedding mechanism based on multiple histograms modification (MHM). A complexity measurement is computed for each pixel according to its context, and the pixels with a given complexity are collected together to generate a PEH. By varying the complexity to cover the whole image, a sequence of histograms can be generated. Then, two expansion bins are selected in each generated histogram and data embedding is realized based on MHM. Here, the expansion bins are adaptively selected considering the image content such that the embedding distortion is minimized. With such selected expansion bins, the proposed MHM-based RDH method works well. Experimental results show that the proposed method outperforms the conventional PEE and its miscellaneous extensions including both one- or two-dimensional PEH-based ones.
doi_str_mv 10.1109/TIFS.2015.2444354
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7122319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7122319</ieee_id><sourcerecordid>10_1109_TIFS_2015_2444354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5e8ab4ab449413112f8f0e9b9e7d5bed4054f6323e6c0497e7e13f5c8e341e503</originalsourceid><addsrcrecordid>eNo9kNFKw0AQRRdRsFY_QHzZH0jc2Z1Nso9aW1tpEbQ-h00yW1bSpGSj4N-b0FIYuAMz5z4cxu5BxADCPG5Xi89YCtCxRESl8YJNQOskSoSEy_MO6prdhPAtBCIk2YS9zZ3zpaem5x_0S13wRU38xfaWL33lmx1_toEq3jZ881P3_jBclz707a6z-8A3beUH3va-bW7ZlbN1oLtTTtnXYr6dLaP1--tq9rSOSpnoPtKU2QKHQYOgAKTLnCBTGEorXVCFQqNLlFSUlAJNSimBcrrMSCGQFmrK4Nhbdm0IHbn80Pm97f5yEPkoIx9l5KOM_CRjYB6OjCei838KUiow6h830lsP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Reversible Data Hiding Based on Multiple Histograms Modification</title><source>IEEE Electronic Library (IEL)</source><creator>Xiaolong Li ; Weiming Zhang ; Xinlu Gui ; Bin Yang</creator><creatorcontrib>Xiaolong Li ; Weiming Zhang ; Xinlu Gui ; Bin Yang</creatorcontrib><description>Prediction-error expansion (PEE) is the most successful reversible data hiding (RDH) technique, and existing PEE-based RDH methods are mainly based on the modification of one- or two-dimensional prediction-error histogram (PEH). The two-dimensional PEH-based methods perform generally better than those based on one-dimensional PEH; however, their performance is still unsatisfactory since the PEH modification manner is fixed and independent of image content. In this paper, we propose a new RDH method based on PEE for multiple histograms. Unlike the previous methods, we consider in this paper a sequence of histograms and devise a new embedding mechanism based on multiple histograms modification (MHM). A complexity measurement is computed for each pixel according to its context, and the pixels with a given complexity are collected together to generate a PEH. By varying the complexity to cover the whole image, a sequence of histograms can be generated. Then, two expansion bins are selected in each generated histogram and data embedding is realized based on MHM. Here, the expansion bins are adaptively selected considering the image content such that the embedding distortion is minimized. With such selected expansion bins, the proposed MHM-based RDH method works well. Experimental results show that the proposed method outperforms the conventional PEE and its miscellaneous extensions including both one- or two-dimensional PEH-based ones.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2015.2444354</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive embedding ; Complexity theory ; Context ; Data mining ; Distortion ; Histograms ; Image coding ; Image restoration ; multiple histograms modification ; prediction-error expansion ; Reversible data hiding</subject><ispartof>IEEE transactions on information forensics and security, 2015-09, Vol.10 (9), p.2016-2027</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-5e8ab4ab449413112f8f0e9b9e7d5bed4054f6323e6c0497e7e13f5c8e341e503</citedby><cites>FETCH-LOGICAL-c265t-5e8ab4ab449413112f8f0e9b9e7d5bed4054f6323e6c0497e7e13f5c8e341e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7122319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7122319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaolong Li</creatorcontrib><creatorcontrib>Weiming Zhang</creatorcontrib><creatorcontrib>Xinlu Gui</creatorcontrib><creatorcontrib>Bin Yang</creatorcontrib><title>Efficient Reversible Data Hiding Based on Multiple Histograms Modification</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Prediction-error expansion (PEE) is the most successful reversible data hiding (RDH) technique, and existing PEE-based RDH methods are mainly based on the modification of one- or two-dimensional prediction-error histogram (PEH). The two-dimensional PEH-based methods perform generally better than those based on one-dimensional PEH; however, their performance is still unsatisfactory since the PEH modification manner is fixed and independent of image content. In this paper, we propose a new RDH method based on PEE for multiple histograms. Unlike the previous methods, we consider in this paper a sequence of histograms and devise a new embedding mechanism based on multiple histograms modification (MHM). A complexity measurement is computed for each pixel according to its context, and the pixels with a given complexity are collected together to generate a PEH. By varying the complexity to cover the whole image, a sequence of histograms can be generated. Then, two expansion bins are selected in each generated histogram and data embedding is realized based on MHM. Here, the expansion bins are adaptively selected considering the image content such that the embedding distortion is minimized. With such selected expansion bins, the proposed MHM-based RDH method works well. Experimental results show that the proposed method outperforms the conventional PEE and its miscellaneous extensions including both one- or two-dimensional PEH-based ones.</description><subject>adaptive embedding</subject><subject>Complexity theory</subject><subject>Context</subject><subject>Data mining</subject><subject>Distortion</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image restoration</subject><subject>multiple histograms modification</subject><subject>prediction-error expansion</subject><subject>Reversible data hiding</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKw0AQRRdRsFY_QHzZH0jc2Z1Nso9aW1tpEbQ-h00yW1bSpGSj4N-b0FIYuAMz5z4cxu5BxADCPG5Xi89YCtCxRESl8YJNQOskSoSEy_MO6prdhPAtBCIk2YS9zZ3zpaem5x_0S13wRU38xfaWL33lmx1_toEq3jZ881P3_jBclz707a6z-8A3beUH3va-bW7ZlbN1oLtTTtnXYr6dLaP1--tq9rSOSpnoPtKU2QKHQYOgAKTLnCBTGEorXVCFQqNLlFSUlAJNSimBcrrMSCGQFmrK4Nhbdm0IHbn80Pm97f5yEPkoIx9l5KOM_CRjYB6OjCei838KUiow6h830lsP</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Xiaolong Li</creator><creator>Weiming Zhang</creator><creator>Xinlu Gui</creator><creator>Bin Yang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Efficient Reversible Data Hiding Based on Multiple Histograms Modification</title><author>Xiaolong Li ; Weiming Zhang ; Xinlu Gui ; Bin Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5e8ab4ab449413112f8f0e9b9e7d5bed4054f6323e6c0497e7e13f5c8e341e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive embedding</topic><topic>Complexity theory</topic><topic>Context</topic><topic>Data mining</topic><topic>Distortion</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image restoration</topic><topic>multiple histograms modification</topic><topic>prediction-error expansion</topic><topic>Reversible data hiding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaolong Li</creatorcontrib><creatorcontrib>Weiming Zhang</creatorcontrib><creatorcontrib>Xinlu Gui</creatorcontrib><creatorcontrib>Bin Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaolong Li</au><au>Weiming Zhang</au><au>Xinlu Gui</au><au>Bin Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Reversible Data Hiding Based on Multiple Histograms Modification</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2015-09</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>2016</spage><epage>2027</epage><pages>2016-2027</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Prediction-error expansion (PEE) is the most successful reversible data hiding (RDH) technique, and existing PEE-based RDH methods are mainly based on the modification of one- or two-dimensional prediction-error histogram (PEH). The two-dimensional PEH-based methods perform generally better than those based on one-dimensional PEH; however, their performance is still unsatisfactory since the PEH modification manner is fixed and independent of image content. In this paper, we propose a new RDH method based on PEE for multiple histograms. Unlike the previous methods, we consider in this paper a sequence of histograms and devise a new embedding mechanism based on multiple histograms modification (MHM). A complexity measurement is computed for each pixel according to its context, and the pixels with a given complexity are collected together to generate a PEH. By varying the complexity to cover the whole image, a sequence of histograms can be generated. Then, two expansion bins are selected in each generated histogram and data embedding is realized based on MHM. Here, the expansion bins are adaptively selected considering the image content such that the embedding distortion is minimized. With such selected expansion bins, the proposed MHM-based RDH method works well. Experimental results show that the proposed method outperforms the conventional PEE and its miscellaneous extensions including both one- or two-dimensional PEH-based ones.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2015.2444354</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2015-09, Vol.10 (9), p.2016-2027
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_7122319
source IEEE Electronic Library (IEL)
subjects adaptive embedding
Complexity theory
Context
Data mining
Distortion
Histograms
Image coding
Image restoration
multiple histograms modification
prediction-error expansion
Reversible data hiding
title Efficient Reversible Data Hiding Based on Multiple Histograms Modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Reversible%20Data%20Hiding%20Based%20on%20Multiple%20Histograms%20Modification&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Xiaolong%20Li&rft.date=2015-09&rft.volume=10&rft.issue=9&rft.spage=2016&rft.epage=2027&rft.pages=2016-2027&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2015.2444354&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2015_2444354%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7122319&rfr_iscdi=true