Data-driven homologue matching for chromosome identification

Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1998-06, Vol.17 (3), p.451-462
Hauptverfasser: Stanley, R.J., Keller, J.M., Gader, P., Caldwell, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 3
container_start_page 451
container_title IEEE transactions on medical imaging
container_volume 17
creator Stanley, R.J.
Keller, J.M.
Gader, P.
Caldwell, C.W.
description Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying "normal" chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to the authors' homologue matcher for identifying class 17 within normal and abnormal metaphase spreads.
doi_str_mv 10.1109/42.712134
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_712134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>712134</ieee_id><sourcerecordid>28279846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-be0a3f6f6898a7e4c00dfe544d54f583fa33095c63670ce05fd254ed0df660ee3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgypzTg1dB6EEED50vv9oGvMj8CQMvCt5Klr5skbbRpBP87-1Y2XWnHL4f3nv5EnJOYUopqFvBpjlllIsDMqZSFimT4vOQjIHlRQqQsWNyEuMXABUS1IiMVM6lgmJM7h50p9MquF9sk5VvfO2Xa0wa3ZmVa5eJ9SExq9AH0TeYuArbzllndOd8e0qOrK4jng3vhHw8Pb7PXtL52_Pr7H6eGq6gSxcImtvMZoUqdI7CAFQWpRCVFFYW3GrOQUmT8SwHgyBt1d-PVa-yDBD5hFxv534H_7PG2JWNiwbrWrfo17HM-zW0_85eyAqWq0Jk-yHliqt8A2-20AQfY0BbfgfX6PBXUig33ZeCldvue3s5DF0vGqx2cii7z6-GXEejaxt0a1zcMcYVZVL17GLLHCLu0mHHPzb5ks4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21393976</pqid></control><display><type>article</type><title>Data-driven homologue matching for chromosome identification</title><source>IEEE Electronic Library (IEL)</source><creator>Stanley, R.J. ; Keller, J.M. ; Gader, P. ; Caldwell, C.W.</creator><creatorcontrib>Stanley, R.J. ; Keller, J.M. ; Gader, P. ; Caldwell, C.W.</creatorcontrib><description>Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying "normal" chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to the authors' homologue matcher for identifying class 17 within normal and abnormal metaphase spreads.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.712134</identifier><identifier>PMID: 9735908</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Biological and medical sciences ; Biological cells ; Cells (biology) ; Chromatin. Chromosome ; Chromosome Banding ; Chromosomes ; Computer science ; Dynamic programming ; Fundamental and applied biological sciences. Psychology ; Genetics ; Humans ; Image analysis ; Image Interpretation, Computer-Assisted ; Karyotyping - methods ; Metaphase ; Molecular and cellular biology ; Molecular genetics ; Neural networks ; Neural Networks (Computer) ; Pattern matching ; Pattern recognition ; Visualization</subject><ispartof>IEEE transactions on medical imaging, 1998-06, Vol.17 (3), p.451-462</ispartof><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-be0a3f6f6898a7e4c00dfe544d54f583fa33095c63670ce05fd254ed0df660ee3</citedby><cites>FETCH-LOGICAL-c390t-be0a3f6f6898a7e4c00dfe544d54f583fa33095c63670ce05fd254ed0df660ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/712134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/712134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2391259$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9735908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stanley, R.J.</creatorcontrib><creatorcontrib>Keller, J.M.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Caldwell, C.W.</creatorcontrib><title>Data-driven homologue matching for chromosome identification</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying "normal" chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to the authors' homologue matcher for identifying class 17 within normal and abnormal metaphase spreads.</description><subject>Biological and medical sciences</subject><subject>Biological cells</subject><subject>Cells (biology)</subject><subject>Chromatin. Chromosome</subject><subject>Chromosome Banding</subject><subject>Chromosomes</subject><subject>Computer science</subject><subject>Dynamic programming</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Karyotyping - methods</subject><subject>Metaphase</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Visualization</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0M9LwzAUB_AgypzTg1dB6EEED50vv9oGvMj8CQMvCt5Klr5skbbRpBP87-1Y2XWnHL4f3nv5EnJOYUopqFvBpjlllIsDMqZSFimT4vOQjIHlRQqQsWNyEuMXABUS1IiMVM6lgmJM7h50p9MquF9sk5VvfO2Xa0wa3ZmVa5eJ9SExq9AH0TeYuArbzllndOd8e0qOrK4jng3vhHw8Pb7PXtL52_Pr7H6eGq6gSxcImtvMZoUqdI7CAFQWpRCVFFYW3GrOQUmT8SwHgyBt1d-PVa-yDBD5hFxv534H_7PG2JWNiwbrWrfo17HM-zW0_85eyAqWq0Jk-yHliqt8A2-20AQfY0BbfgfX6PBXUig33ZeCldvue3s5DF0vGqx2cii7z6-GXEejaxt0a1zcMcYVZVL17GLLHCLu0mHHPzb5ks4</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Stanley, R.J.</creator><creator>Keller, J.M.</creator><creator>Gader, P.</creator><creator>Caldwell, C.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19980601</creationdate><title>Data-driven homologue matching for chromosome identification</title><author>Stanley, R.J. ; Keller, J.M. ; Gader, P. ; Caldwell, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-be0a3f6f6898a7e4c00dfe544d54f583fa33095c63670ce05fd254ed0df660ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Biological cells</topic><topic>Cells (biology)</topic><topic>Chromatin. Chromosome</topic><topic>Chromosome Banding</topic><topic>Chromosomes</topic><topic>Computer science</topic><topic>Dynamic programming</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Karyotyping - methods</topic><topic>Metaphase</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Stanley, R.J.</creatorcontrib><creatorcontrib>Keller, J.M.</creatorcontrib><creatorcontrib>Gader, P.</creatorcontrib><creatorcontrib>Caldwell, C.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stanley, R.J.</au><au>Keller, J.M.</au><au>Gader, P.</au><au>Caldwell, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven homologue matching for chromosome identification</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>17</volume><issue>3</issue><spage>451</spage><epage>462</epage><pages>451-462</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Karyotyping involves the visualization and classification of chromosomes into standard classes. In "normal" human metaphase spreads, chromosomes occur in homologous pairs for the autosomal classes 1-22, and X chromosome for females. Many existing approaches for performing automated human chromosome image analysis presuppose cell normalcy, containing 46 chromosomes within a metaphase spread with two chromosomes per class. This is an acceptable assumption for routine automated chromosome image analysis. However, many genetic abnormalities are directly linked to structural or numerical aberrations of chromosomes within the metaphase spread. Thus, two chromosomes per class cannot be assumed for anomaly analysis. This paper presents the development of image analysis techniques which are extendible to detecting numerical aberrations evolving from structural abnormalities. Specifically, an approach to identifying "normal" chromosomes from selected class(es) within a metaphase spread is presented. Chromosome assignment to a specific class is initially based on neural networks, followed by banding pattern and centromeric index criteria checking, and concluding with homologue matching. Experimental results are presented comparing neural networks as the sole classifier to the authors' homologue matcher for identifying class 17 within normal and abnormal metaphase spreads.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>9735908</pmid><doi>10.1109/42.712134</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1998-06, Vol.17 (3), p.451-462
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_712134
source IEEE Electronic Library (IEL)
subjects Biological and medical sciences
Biological cells
Cells (biology)
Chromatin. Chromosome
Chromosome Banding
Chromosomes
Computer science
Dynamic programming
Fundamental and applied biological sciences. Psychology
Genetics
Humans
Image analysis
Image Interpretation, Computer-Assisted
Karyotyping - methods
Metaphase
Molecular and cellular biology
Molecular genetics
Neural networks
Neural Networks (Computer)
Pattern matching
Pattern recognition
Visualization
title Data-driven homologue matching for chromosome identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20homologue%20matching%20for%20chromosome%20identification&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Stanley,%20R.J.&rft.date=1998-06-01&rft.volume=17&rft.issue=3&rft.spage=451&rft.epage=462&rft.pages=451-462&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.712134&rft_dat=%3Cproquest_RIE%3E28279846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21393976&rft_id=info:pmid/9735908&rft_ieee_id=712134&rfr_iscdi=true