Automatic facial feature detection and location
A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1364 vol.2 |
---|---|
container_issue | |
container_start_page | 1360 |
container_title | |
container_volume | 2 |
creator | Pinto-Elias, R. Sossa-Azuela, J.H. |
description | A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values. |
doi_str_mv | 10.1109/ICPR.1998.711954 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_711954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>711954</ieee_id><sourcerecordid>711954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-446f4a3456e5a5bfa60f250faa5857725e2046919d8d1fd285cc85d12646536e3</originalsourceid><addsrcrecordid>eNotj0tLAzEURoMPcFrdi6v5AzO9N8nNJMsy-CgUFNF1ueYBkWlHZtKF_16lrj7O5nA-IW4RWkRwq03_8tqic7btEB3pM1FJq7DpdEfnYgEWrbGEUl2ICoGw0YbwSizm-RNAgiJbidX6WMY9l-zrxD7zUKfI5TjFOsQSfcnjoeZDqIfR8x9ci8vEwxxv_ncp3h_u3_qnZvv8uOnX2yYj6NJobZJmpclEYvpIbCBJgsRMlrpOUpSgjUMXbMAUpCXvLQWU5rdRmaiW4u7kzTHG3deU9zx9704_1Q8PkkNg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic facial feature detection and location</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pinto-Elias, R. ; Sossa-Azuela, J.H.</creator><creatorcontrib>Pinto-Elias, R. ; Sossa-Azuela, J.H.</creatorcontrib><description>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0818685123</identifier><identifier>ISBN: 9780818685125</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.1998.711954</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face detection ; Facial features</subject><ispartof>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), 1998, Vol.2, p.1360-1364 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/711954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/711954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinto-Elias, R.</creatorcontrib><creatorcontrib>Sossa-Azuela, J.H.</creatorcontrib><title>Automatic facial feature detection and location</title><title>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170)</title><addtitle>ICPR</addtitle><description>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</description><subject>Face detection</subject><subject>Facial features</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0818685123</isbn><isbn>9780818685125</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURoMPcFrdi6v5AzO9N8nNJMsy-CgUFNF1ueYBkWlHZtKF_16lrj7O5nA-IW4RWkRwq03_8tqic7btEB3pM1FJq7DpdEfnYgEWrbGEUl2ICoGw0YbwSizm-RNAgiJbidX6WMY9l-zrxD7zUKfI5TjFOsQSfcnjoeZDqIfR8x9ci8vEwxxv_ncp3h_u3_qnZvv8uOnX2yYj6NJobZJmpclEYvpIbCBJgsRMlrpOUpSgjUMXbMAUpCXvLQWU5rdRmaiW4u7kzTHG3deU9zx9704_1Q8PkkNg</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Pinto-Elias, R.</creator><creator>Sossa-Azuela, J.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Automatic facial feature detection and location</title><author>Pinto-Elias, R. ; Sossa-Azuela, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-446f4a3456e5a5bfa60f250faa5857725e2046919d8d1fd285cc85d12646536e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Face detection</topic><topic>Facial features</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinto-Elias, R.</creatorcontrib><creatorcontrib>Sossa-Azuela, J.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinto-Elias, R.</au><au>Sossa-Azuela, J.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic facial feature detection and location</atitle><btitle>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170)</btitle><stitle>ICPR</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>1360</spage><epage>1364 vol.2</epage><pages>1360-1364 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0818685123</isbn><isbn>9780818685125</isbn><abstract>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.1998.711954</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), 1998, Vol.2, p.1360-1364 vol.2 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_711954 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Face detection Facial features |
title | Automatic facial feature detection and location |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20facial%20feature%20detection%20and%20location&rft.btitle=Proceedings.%20Fourteenth%20International%20Conference%20on%20Pattern%20Recognition%20(Cat.%20No.98EX170)&rft.au=Pinto-Elias,%20R.&rft.date=1998&rft.volume=2&rft.spage=1360&rft.epage=1364%20vol.2&rft.pages=1360-1364%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0818685123&rft.isbn_list=9780818685125&rft_id=info:doi/10.1109/ICPR.1998.711954&rft_dat=%3Cieee_6IE%3E711954%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=711954&rfr_iscdi=true |