Automatic facial feature detection and location

A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pinto-Elias, R., Sossa-Azuela, J.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1364 vol.2
container_issue
container_start_page 1360
container_title
container_volume 2
creator Pinto-Elias, R.
Sossa-Azuela, J.H.
description A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.
doi_str_mv 10.1109/ICPR.1998.711954
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_711954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>711954</ieee_id><sourcerecordid>711954</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-446f4a3456e5a5bfa60f250faa5857725e2046919d8d1fd285cc85d12646536e3</originalsourceid><addsrcrecordid>eNotj0tLAzEURoMPcFrdi6v5AzO9N8nNJMsy-CgUFNF1ueYBkWlHZtKF_16lrj7O5nA-IW4RWkRwq03_8tqic7btEB3pM1FJq7DpdEfnYgEWrbGEUl2ICoGw0YbwSizm-RNAgiJbidX6WMY9l-zrxD7zUKfI5TjFOsQSfcnjoeZDqIfR8x9ci8vEwxxv_ncp3h_u3_qnZvv8uOnX2yYj6NJobZJmpclEYvpIbCBJgsRMlrpOUpSgjUMXbMAUpCXvLQWU5rdRmaiW4u7kzTHG3deU9zx9704_1Q8PkkNg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic facial feature detection and location</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pinto-Elias, R. ; Sossa-Azuela, J.H.</creator><creatorcontrib>Pinto-Elias, R. ; Sossa-Azuela, J.H.</creatorcontrib><description>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0818685123</identifier><identifier>ISBN: 9780818685125</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.1998.711954</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face detection ; Facial features</subject><ispartof>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), 1998, Vol.2, p.1360-1364 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/711954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/711954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinto-Elias, R.</creatorcontrib><creatorcontrib>Sossa-Azuela, J.H.</creatorcontrib><title>Automatic facial feature detection and location</title><title>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170)</title><addtitle>ICPR</addtitle><description>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</description><subject>Face detection</subject><subject>Facial features</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0818685123</isbn><isbn>9780818685125</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURoMPcFrdi6v5AzO9N8nNJMsy-CgUFNF1ueYBkWlHZtKF_16lrj7O5nA-IW4RWkRwq03_8tqic7btEB3pM1FJq7DpdEfnYgEWrbGEUl2ICoGw0YbwSizm-RNAgiJbidX6WMY9l-zrxD7zUKfI5TjFOsQSfcnjoeZDqIfR8x9ci8vEwxxv_ncp3h_u3_qnZvv8uOnX2yYj6NJobZJmpclEYvpIbCBJgsRMlrpOUpSgjUMXbMAUpCXvLQWU5rdRmaiW4u7kzTHG3deU9zx9704_1Q8PkkNg</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Pinto-Elias, R.</creator><creator>Sossa-Azuela, J.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Automatic facial feature detection and location</title><author>Pinto-Elias, R. ; Sossa-Azuela, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-446f4a3456e5a5bfa60f250faa5857725e2046919d8d1fd285cc85d12646536e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Face detection</topic><topic>Facial features</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinto-Elias, R.</creatorcontrib><creatorcontrib>Sossa-Azuela, J.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinto-Elias, R.</au><au>Sossa-Azuela, J.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic facial feature detection and location</atitle><btitle>Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170)</btitle><stitle>ICPR</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>1360</spage><epage>1364 vol.2</epage><pages>1360-1364 vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0818685123</isbn><isbn>9780818685125</isbn><abstract>A method to automatically detect and locate human face features (eyes and mouth) in a 2D gray level image is presented. The method uses a genetic algorithm (GA) and an invariant description of the facial features to accomplish the task. The descriptors used are the well known first four translation, rotation, and scale moment invariants proposed by Hu (1962). In a first step, an image possibly containing a face or a set of faces is first divided into small cells of fixed size. For each cell, the ordinary moments are next computed. From these quantities, the corresponding Hu's invariants are then derived. Human face feature detection and location is thus accomplished by grouping individual cells using a genetic algorithm by fitting a specific cost function. The cost function corresponds to the invariant description of a specified face feature (eye or mouth) given in terms of the corresponding gray level values.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.1998.711954</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), 1998, Vol.2, p.1360-1364 vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_711954
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face detection
Facial features
title Automatic facial feature detection and location
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20facial%20feature%20detection%20and%20location&rft.btitle=Proceedings.%20Fourteenth%20International%20Conference%20on%20Pattern%20Recognition%20(Cat.%20No.98EX170)&rft.au=Pinto-Elias,%20R.&rft.date=1998&rft.volume=2&rft.spage=1360&rft.epage=1364%20vol.2&rft.pages=1360-1364%20vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0818685123&rft.isbn_list=9780818685125&rft_id=info:doi/10.1109/ICPR.1998.711954&rft_dat=%3Cieee_6IE%3E711954%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=711954&rfr_iscdi=true