Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer
The need for extreme-duration light-weight power sources for space applications motivates the study and development of polymer-based betavoltaics. The betavoltaic device, based on the semiconductive polymer-fullerene blend of poly(3-hexylthiophene): indene-C 60 bisadduct (P3HT:ICBA), is demonstrated...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2015-07, Vol.62 (7), p.2320-2326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2326 |
---|---|
container_issue | 7 |
container_start_page | 2320 |
container_title | IEEE transactions on electron devices |
container_volume | 62 |
creator | Sharma, Ashish Melancon, Justin M. Bailey, Sheila G. Zivanovic, Sandra R. |
description | The need for extreme-duration light-weight power sources for space applications motivates the study and development of polymer-based betavoltaics. The betavoltaic device, based on the semiconductive polymer-fullerene blend of poly(3-hexylthiophene): indene-C 60 bisadduct (P3HT:ICBA), is demonstrated here for the first time. Both direct and indirect energy conversion methods were explored. For the indirect conversion method, a phosphor intermediate layer of cerium-doped yttrium aluminum garnet (Ce:YAG) was used on top of the polymer device. A high open circuit voltage of 0.56 V has been achieved in the betavoltaic device fabricated on a polyethylene terephthalate (PET) substrate with indirect energy conversion at 30-keV electron kinetic energy. The maximum output electrical power of 62 nW was achieved at 30-keV input electron beam (e-beam) energy. The highest betavoltaic power conversion efficiency of 0.78% was achieved at an e-beam energy of 10 keV. Using the thin PET substrate instead of a glass substrate for the polymer device and phosphor screen fabrication, the betavoltaic device performance has been significantly improved due to a reduction in physical distance between photon-generating Ce:YAG phosphor screen and photon-absorbing P3HT:ICBA layer. The use of the PET substrates helped by significantly decreasing the directional and external interaction losses. |
doi_str_mv | 10.1109/TED.2015.2434852 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7118667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7118667</ieee_id><sourcerecordid>10_1109_TED_2015_2434852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-7a5bc7c35d9c3e24176735baa13e787c364f0d474519b90aa800d86c55ecda73</originalsourceid><addsrcrecordid>eNo9j01Lw0AQhhdRMFbvgpf9A4m72e-LoLFaoWDBeA6b3UnZkjSSTQv9901p8fQyvPPM8CD0SElGKTHP5fw9ywkVWc4Z1yK_QgkVQqVGcnmNEkKoTg3T7BbdxbiZRsl5nqCXNxjtvm9HGxwuoG0j_o1hu8YrtijxD3TB9Vu_c2PYAy767Wa3tiN4vOrbQwfDPbppbBvh4ZIzVH7My2KRLr8_v4rXZeo4YWOqrKidckx44xjknCqpmKitpQyUngrJG-K54oKa2hBrNSFeSycEOG8VmyFyPuuGPsYBmupvCJ0dDhUl1Um_mvSrk3510Z-QpzMSAOB_XVGq5fT7CB5YVbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer</title><source>IEEE Electronic Library (IEL)</source><creator>Sharma, Ashish ; Melancon, Justin M. ; Bailey, Sheila G. ; Zivanovic, Sandra R.</creator><creatorcontrib>Sharma, Ashish ; Melancon, Justin M. ; Bailey, Sheila G. ; Zivanovic, Sandra R.</creatorcontrib><description>The need for extreme-duration light-weight power sources for space applications motivates the study and development of polymer-based betavoltaics. The betavoltaic device, based on the semiconductive polymer-fullerene blend of poly(3-hexylthiophene): indene-C 60 bisadduct (P3HT:ICBA), is demonstrated here for the first time. Both direct and indirect energy conversion methods were explored. For the indirect conversion method, a phosphor intermediate layer of cerium-doped yttrium aluminum garnet (Ce:YAG) was used on top of the polymer device. A high open circuit voltage of 0.56 V has been achieved in the betavoltaic device fabricated on a polyethylene terephthalate (PET) substrate with indirect energy conversion at 30-keV electron kinetic energy. The maximum output electrical power of 62 nW was achieved at 30-keV input electron beam (e-beam) energy. The highest betavoltaic power conversion efficiency of 0.78% was achieved at an e-beam energy of 10 keV. Using the thin PET substrate instead of a glass substrate for the polymer device and phosphor screen fabrication, the betavoltaic device performance has been significantly improved due to a reduction in physical distance between photon-generating Ce:YAG phosphor screen and photon-absorbing P3HT:ICBA layer. The use of the PET substrates helped by significantly decreasing the directional and external interaction losses.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2015.2434852</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Beta rays ; betavoltaic ; Degradation ; electron beam (e-beam) ; Energy conversion ; Glass ; optical polymers ; Phosphors ; poly(3-hexylthiophene): indene-C₆₀ bisadduct (P3HT:ICBA) ; Polymers ; Positron emission tomography ; scintillator ; Substrates</subject><ispartof>IEEE transactions on electron devices, 2015-07, Vol.62 (7), p.2320-2326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-7a5bc7c35d9c3e24176735baa13e787c364f0d474519b90aa800d86c55ecda73</citedby><cites>FETCH-LOGICAL-c403t-7a5bc7c35d9c3e24176735baa13e787c364f0d474519b90aa800d86c55ecda73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7118667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7118667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Melancon, Justin M.</creatorcontrib><creatorcontrib>Bailey, Sheila G.</creatorcontrib><creatorcontrib>Zivanovic, Sandra R.</creatorcontrib><title>Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The need for extreme-duration light-weight power sources for space applications motivates the study and development of polymer-based betavoltaics. The betavoltaic device, based on the semiconductive polymer-fullerene blend of poly(3-hexylthiophene): indene-C 60 bisadduct (P3HT:ICBA), is demonstrated here for the first time. Both direct and indirect energy conversion methods were explored. For the indirect conversion method, a phosphor intermediate layer of cerium-doped yttrium aluminum garnet (Ce:YAG) was used on top of the polymer device. A high open circuit voltage of 0.56 V has been achieved in the betavoltaic device fabricated on a polyethylene terephthalate (PET) substrate with indirect energy conversion at 30-keV electron kinetic energy. The maximum output electrical power of 62 nW was achieved at 30-keV input electron beam (e-beam) energy. The highest betavoltaic power conversion efficiency of 0.78% was achieved at an e-beam energy of 10 keV. Using the thin PET substrate instead of a glass substrate for the polymer device and phosphor screen fabrication, the betavoltaic device performance has been significantly improved due to a reduction in physical distance between photon-generating Ce:YAG phosphor screen and photon-absorbing P3HT:ICBA layer. The use of the PET substrates helped by significantly decreasing the directional and external interaction losses.</description><subject>Beta rays</subject><subject>betavoltaic</subject><subject>Degradation</subject><subject>electron beam (e-beam)</subject><subject>Energy conversion</subject><subject>Glass</subject><subject>optical polymers</subject><subject>Phosphors</subject><subject>poly(3-hexylthiophene): indene-C₆₀ bisadduct (P3HT:ICBA)</subject><subject>Polymers</subject><subject>Positron emission tomography</subject><subject>scintillator</subject><subject>Substrates</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01Lw0AQhhdRMFbvgpf9A4m72e-LoLFaoWDBeA6b3UnZkjSSTQv9901p8fQyvPPM8CD0SElGKTHP5fw9ywkVWc4Z1yK_QgkVQqVGcnmNEkKoTg3T7BbdxbiZRsl5nqCXNxjtvm9HGxwuoG0j_o1hu8YrtijxD3TB9Vu_c2PYAy767Wa3tiN4vOrbQwfDPbppbBvh4ZIzVH7My2KRLr8_v4rXZeo4YWOqrKidckx44xjknCqpmKitpQyUngrJG-K54oKa2hBrNSFeSycEOG8VmyFyPuuGPsYBmupvCJ0dDhUl1Um_mvSrk3510Z-QpzMSAOB_XVGq5fT7CB5YVbY</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Sharma, Ashish</creator><creator>Melancon, Justin M.</creator><creator>Bailey, Sheila G.</creator><creator>Zivanovic, Sandra R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer</title><author>Sharma, Ashish ; Melancon, Justin M. ; Bailey, Sheila G. ; Zivanovic, Sandra R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-7a5bc7c35d9c3e24176735baa13e787c364f0d474519b90aa800d86c55ecda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beta rays</topic><topic>betavoltaic</topic><topic>Degradation</topic><topic>electron beam (e-beam)</topic><topic>Energy conversion</topic><topic>Glass</topic><topic>optical polymers</topic><topic>Phosphors</topic><topic>poly(3-hexylthiophene): indene-C₆₀ bisadduct (P3HT:ICBA)</topic><topic>Polymers</topic><topic>Positron emission tomography</topic><topic>scintillator</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Melancon, Justin M.</creatorcontrib><creatorcontrib>Bailey, Sheila G.</creatorcontrib><creatorcontrib>Zivanovic, Sandra R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Ashish</au><au>Melancon, Justin M.</au><au>Bailey, Sheila G.</au><au>Zivanovic, Sandra R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>62</volume><issue>7</issue><spage>2320</spage><epage>2326</epage><pages>2320-2326</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The need for extreme-duration light-weight power sources for space applications motivates the study and development of polymer-based betavoltaics. The betavoltaic device, based on the semiconductive polymer-fullerene blend of poly(3-hexylthiophene): indene-C 60 bisadduct (P3HT:ICBA), is demonstrated here for the first time. Both direct and indirect energy conversion methods were explored. For the indirect conversion method, a phosphor intermediate layer of cerium-doped yttrium aluminum garnet (Ce:YAG) was used on top of the polymer device. A high open circuit voltage of 0.56 V has been achieved in the betavoltaic device fabricated on a polyethylene terephthalate (PET) substrate with indirect energy conversion at 30-keV electron kinetic energy. The maximum output electrical power of 62 nW was achieved at 30-keV input electron beam (e-beam) energy. The highest betavoltaic power conversion efficiency of 0.78% was achieved at an e-beam energy of 10 keV. Using the thin PET substrate instead of a glass substrate for the polymer device and phosphor screen fabrication, the betavoltaic device performance has been significantly improved due to a reduction in physical distance between photon-generating Ce:YAG phosphor screen and photon-absorbing P3HT:ICBA layer. The use of the PET substrates helped by significantly decreasing the directional and external interaction losses.</abstract><pub>IEEE</pub><doi>10.1109/TED.2015.2434852</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2015-07, Vol.62 (7), p.2320-2326 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_7118667 |
source | IEEE Electronic Library (IEL) |
subjects | Beta rays betavoltaic Degradation electron beam (e-beam) Energy conversion Glass optical polymers Phosphors poly(3-hexylthiophene): indene-C₆₀ bisadduct (P3HT:ICBA) Polymers Positron emission tomography scintillator Substrates |
title | Betavoltaic Cells Using P3HT Semiconductive Conjugated Polymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Betavoltaic%20Cells%20Using%20P3HT%20Semiconductive%20Conjugated%20Polymer&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sharma,%20Ashish&rft.date=2015-07-01&rft.volume=62&rft.issue=7&rft.spage=2320&rft.epage=2326&rft.pages=2320-2326&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2015.2434852&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2015_2434852%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7118667&rfr_iscdi=true |