New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2015-07, Vol.63 (7), p.2420-2427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2427 |
---|---|
container_issue | 7 |
container_start_page | 2420 |
container_title | IEEE transactions on communications |
container_volume | 63 |
creator | Freudenberger, Jurgen Shavgulidze, Sergo |
description | Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations. |
doi_str_mv | 10.1109/TCOMM.2015.2441691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7118158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7118158</ieee_id><sourcerecordid>1718943673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</originalsourceid><addsrcrecordid>eNpdUbFu2zAUJIoGqOvkB9qFQJcuch_5KIocA7VOAtjxEGcWaOLJViBRDik3SL6-Uh106HTA4e7w7h1jXwQshAD7Y1tu1uuFBJEvpFJCW_GBzUSemwxMXnxkMwALmS4K84l9TukJABQgzlh3Ty982Z9i9rPpKKSmD67lD81-grIPaaC2dcNIJ76MfcdXzTH5QzO88bsw0J5i4nUf-Ta6kLomTQF885siHw7Eb9xpZFzg5cGFQO0lu6hdm-jqHefscflrW95mq83NXXm9yjxKM2SI0tdQK0OIeueh1kLUzqFXSNaRFDs0CnOt1M4rMkoCUp0DkNeFkbnEOft-zj3G_vlEaajG0_zUJFB_SpUohLEKdYGj9Nt_0qfxG2P7UaWtttYanALlWeVjn1KkujrGpnPxtRJQTQtUfxeopgWq9wVG09ezqSGif4ZCCCNyg38AP0SCcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696999832</pqid></control><display><type>article</type><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><source>IEEE Electronic Library (IEL)</source><creator>Freudenberger, Jurgen ; Shavgulidze, Sergo</creator><creatorcontrib>Freudenberger, Jurgen ; Shavgulidze, Sergo</creatorcontrib><description>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2015.2441691</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; AWGN channels ; Channels ; Codes ; Constellation diagram ; Constellations ; Construction ; Encoding ; Euclidean distance ; Gaussian ; Integers ; Quaternions ; Quotients ; Signal to noise ratio ; Subgroups</subject><ispartof>IEEE transactions on communications, 2015-07, Vol.63 (7), p.2420-2427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</citedby><cites>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7118158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7118158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Freudenberger, Jurgen</creatorcontrib><creatorcontrib>Shavgulidze, Sergo</creatorcontrib><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</description><subject>Additives</subject><subject>AWGN channels</subject><subject>Channels</subject><subject>Codes</subject><subject>Constellation diagram</subject><subject>Constellations</subject><subject>Construction</subject><subject>Encoding</subject><subject>Euclidean distance</subject><subject>Gaussian</subject><subject>Integers</subject><subject>Quaternions</subject><subject>Quotients</subject><subject>Signal to noise ratio</subject><subject>Subgroups</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUbFu2zAUJIoGqOvkB9qFQJcuch_5KIocA7VOAtjxEGcWaOLJViBRDik3SL6-Uh106HTA4e7w7h1jXwQshAD7Y1tu1uuFBJEvpFJCW_GBzUSemwxMXnxkMwALmS4K84l9TukJABQgzlh3Ty982Z9i9rPpKKSmD67lD81-grIPaaC2dcNIJ76MfcdXzTH5QzO88bsw0J5i4nUf-Ta6kLomTQF885siHw7Eb9xpZFzg5cGFQO0lu6hdm-jqHefscflrW95mq83NXXm9yjxKM2SI0tdQK0OIeueh1kLUzqFXSNaRFDs0CnOt1M4rMkoCUp0DkNeFkbnEOft-zj3G_vlEaajG0_zUJFB_SpUohLEKdYGj9Nt_0qfxG2P7UaWtttYanALlWeVjn1KkujrGpnPxtRJQTQtUfxeopgWq9wVG09ezqSGif4ZCCCNyg38AP0SCcQ</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Freudenberger, Jurgen</creator><creator>Shavgulidze, Sergo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201507</creationdate><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><author>Freudenberger, Jurgen ; Shavgulidze, Sergo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>AWGN channels</topic><topic>Channels</topic><topic>Codes</topic><topic>Constellation diagram</topic><topic>Constellations</topic><topic>Construction</topic><topic>Encoding</topic><topic>Euclidean distance</topic><topic>Gaussian</topic><topic>Integers</topic><topic>Quaternions</topic><topic>Quotients</topic><topic>Signal to noise ratio</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freudenberger, Jurgen</creatorcontrib><creatorcontrib>Shavgulidze, Sergo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freudenberger, Jurgen</au><au>Shavgulidze, Sergo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2015-07</date><risdate>2015</risdate><volume>63</volume><issue>7</issue><spage>2420</spage><epage>2427</epage><pages>2420-2427</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2015.2441691</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2015-07, Vol.63 (7), p.2420-2427 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_7118158 |
source | IEEE Electronic Library (IEL) |
subjects | Additives AWGN channels Channels Codes Constellation diagram Constellations Construction Encoding Euclidean distance Gaussian Integers Quaternions Quotients Signal to noise ratio Subgroups |
title | New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Four-Dimensional%20Signal%20Constellations%20From%20Lipschitz%20Integers%20for%20Transmission%20Over%20the%20Gaussian%20Channel&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Freudenberger,%20Jurgen&rft.date=2015-07&rft.volume=63&rft.issue=7&rft.spage=2420&rft.epage=2427&rft.pages=2420-2427&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2015.2441691&rft_dat=%3Cproquest_RIE%3E1718943673%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696999832&rft_id=info:pmid/&rft_ieee_id=7118158&rfr_iscdi=true |