New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2015-07, Vol.63 (7), p.2420-2427
Hauptverfasser: Freudenberger, Jurgen, Shavgulidze, Sergo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2427
container_issue 7
container_start_page 2420
container_title IEEE transactions on communications
container_volume 63
creator Freudenberger, Jurgen
Shavgulidze, Sergo
description Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.
doi_str_mv 10.1109/TCOMM.2015.2441691
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7118158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7118158</ieee_id><sourcerecordid>1718943673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</originalsourceid><addsrcrecordid>eNpdUbFu2zAUJIoGqOvkB9qFQJcuch_5KIocA7VOAtjxEGcWaOLJViBRDik3SL6-Uh106HTA4e7w7h1jXwQshAD7Y1tu1uuFBJEvpFJCW_GBzUSemwxMXnxkMwALmS4K84l9TukJABQgzlh3Ty982Z9i9rPpKKSmD67lD81-grIPaaC2dcNIJ76MfcdXzTH5QzO88bsw0J5i4nUf-Ta6kLomTQF885siHw7Eb9xpZFzg5cGFQO0lu6hdm-jqHefscflrW95mq83NXXm9yjxKM2SI0tdQK0OIeueh1kLUzqFXSNaRFDs0CnOt1M4rMkoCUp0DkNeFkbnEOft-zj3G_vlEaajG0_zUJFB_SpUohLEKdYGj9Nt_0qfxG2P7UaWtttYanALlWeVjn1KkujrGpnPxtRJQTQtUfxeopgWq9wVG09ezqSGif4ZCCCNyg38AP0SCcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696999832</pqid></control><display><type>article</type><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><source>IEEE Electronic Library (IEL)</source><creator>Freudenberger, Jurgen ; Shavgulidze, Sergo</creator><creatorcontrib>Freudenberger, Jurgen ; Shavgulidze, Sergo</creatorcontrib><description>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2015.2441691</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; AWGN channels ; Channels ; Codes ; Constellation diagram ; Constellations ; Construction ; Encoding ; Euclidean distance ; Gaussian ; Integers ; Quaternions ; Quotients ; Signal to noise ratio ; Subgroups</subject><ispartof>IEEE transactions on communications, 2015-07, Vol.63 (7), p.2420-2427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</citedby><cites>FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7118158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7118158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Freudenberger, Jurgen</creatorcontrib><creatorcontrib>Shavgulidze, Sergo</creatorcontrib><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</description><subject>Additives</subject><subject>AWGN channels</subject><subject>Channels</subject><subject>Codes</subject><subject>Constellation diagram</subject><subject>Constellations</subject><subject>Construction</subject><subject>Encoding</subject><subject>Euclidean distance</subject><subject>Gaussian</subject><subject>Integers</subject><subject>Quaternions</subject><subject>Quotients</subject><subject>Signal to noise ratio</subject><subject>Subgroups</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUbFu2zAUJIoGqOvkB9qFQJcuch_5KIocA7VOAtjxEGcWaOLJViBRDik3SL6-Uh106HTA4e7w7h1jXwQshAD7Y1tu1uuFBJEvpFJCW_GBzUSemwxMXnxkMwALmS4K84l9TukJABQgzlh3Ty982Z9i9rPpKKSmD67lD81-grIPaaC2dcNIJ76MfcdXzTH5QzO88bsw0J5i4nUf-Ta6kLomTQF885siHw7Eb9xpZFzg5cGFQO0lu6hdm-jqHefscflrW95mq83NXXm9yjxKM2SI0tdQK0OIeueh1kLUzqFXSNaRFDs0CnOt1M4rMkoCUp0DkNeFkbnEOft-zj3G_vlEaajG0_zUJFB_SpUohLEKdYGj9Nt_0qfxG2P7UaWtttYanALlWeVjn1KkujrGpnPxtRJQTQtUfxeopgWq9wVG09ezqSGif4ZCCCNyg38AP0SCcQ</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Freudenberger, Jurgen</creator><creator>Shavgulidze, Sergo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201507</creationdate><title>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</title><author>Freudenberger, Jurgen ; Shavgulidze, Sergo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-332cf0f48e336bc0f611faa3c43e9ae21b38435644bc4e84203ef500ec6782523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>AWGN channels</topic><topic>Channels</topic><topic>Codes</topic><topic>Constellation diagram</topic><topic>Constellations</topic><topic>Construction</topic><topic>Encoding</topic><topic>Euclidean distance</topic><topic>Gaussian</topic><topic>Integers</topic><topic>Quaternions</topic><topic>Quotients</topic><topic>Signal to noise ratio</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freudenberger, Jurgen</creatorcontrib><creatorcontrib>Shavgulidze, Sergo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freudenberger, Jurgen</au><au>Shavgulidze, Sergo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2015-07</date><risdate>2015</risdate><volume>63</volume><issue>7</issue><spage>2420</spage><epage>2427</epage><pages>2420-2427</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2015.2441691</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2015-07, Vol.63 (7), p.2420-2427
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_7118158
source IEEE Electronic Library (IEL)
subjects Additives
AWGN channels
Channels
Codes
Constellation diagram
Constellations
Construction
Encoding
Euclidean distance
Gaussian
Integers
Quaternions
Quotients
Signal to noise ratio
Subgroups
title New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Four-Dimensional%20Signal%20Constellations%20From%20Lipschitz%20Integers%20for%20Transmission%20Over%20the%20Gaussian%20Channel&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Freudenberger,%20Jurgen&rft.date=2015-07&rft.volume=63&rft.issue=7&rft.spage=2420&rft.epage=2427&rft.pages=2420-2427&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2015.2441691&rft_dat=%3Cproquest_RIE%3E1718943673%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696999832&rft_id=info:pmid/&rft_ieee_id=7118158&rfr_iscdi=true