Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model
The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric li...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2015-10, Vol.22 (10), p.1806-1810 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1810 |
---|---|
container_issue | 10 |
container_start_page | 1806 |
container_title | IEEE signal processing letters |
container_volume | 22 |
creator | Pan, Xiaoxi Xie, Fengying Jiang, Zhiguo Yin, Jihao |
description | The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency. |
doi_str_mv | 10.1109/LSP.2015.2432466 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7105841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7105841</ieee_id><sourcerecordid>10_1109_LSP_2015_2432466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jZtePYPkL5aaUgEIFzZCfrKihpUFwhwdOT0IrTjmZn5vAxdomwQAR7nRcvCwGoFiKVIs2yIzZDpUwiZIbHowYNibVgTtlZjB8AYNCoGStW7of4K3X9l2t56AfueNFsN-3e3BEvaBtHg687tyF-6yLVvN_yOxrD3aj_BqbnFHrqa2rP2UlwbaSLw52z94f7t-UqyZ8f18ubPKlEJneJDgqVDxRq8EKJLNSI3oA3OvVOVrrSIbPBqxSUtk5Y5yFYT1LVaYVUGzlnsN-thj7GgUL5OTSdG75LhHKCUo5QyglKeYAyVq72lYaI_uMaQZkU5S-RfV1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</creator><creatorcontrib>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</creatorcontrib><description>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2432466</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Channel estimation ; Color distortion ; dark channel prior ; Deformable models ; haze removal ; Image color analysis ; Imaging ; Remote sensing ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2015-10, Vol.22 (10), p.1806-1810</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</citedby><cites>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7105841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7105841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Xiaoxi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</description><subject>Atmospheric modeling</subject><subject>Channel estimation</subject><subject>Color distortion</subject><subject>dark channel prior</subject><subject>Deformable models</subject><subject>haze removal</subject><subject>Image color analysis</subject><subject>Imaging</subject><subject>Remote sensing</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jZtePYPkL5aaUgEIFzZCfrKihpUFwhwdOT0IrTjmZn5vAxdomwQAR7nRcvCwGoFiKVIs2yIzZDpUwiZIbHowYNibVgTtlZjB8AYNCoGStW7of4K3X9l2t56AfueNFsN-3e3BEvaBtHg687tyF-6yLVvN_yOxrD3aj_BqbnFHrqa2rP2UlwbaSLw52z94f7t-UqyZ8f18ubPKlEJneJDgqVDxRq8EKJLNSI3oA3OvVOVrrSIbPBqxSUtk5Y5yFYT1LVaYVUGzlnsN-thj7GgUL5OTSdG75LhHKCUo5QyglKeYAyVq72lYaI_uMaQZkU5S-RfV1c</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Pan, Xiaoxi</creator><creator>Xie, Fengying</creator><creator>Jiang, Zhiguo</creator><creator>Yin, Jihao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><author>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric modeling</topic><topic>Channel estimation</topic><topic>Color distortion</topic><topic>dark channel prior</topic><topic>Deformable models</topic><topic>haze removal</topic><topic>Image color analysis</topic><topic>Imaging</topic><topic>Remote sensing</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaoxi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Xiaoxi</au><au>Xie, Fengying</au><au>Jiang, Zhiguo</au><au>Yin, Jihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-10</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1806</spage><epage>1810</epage><pages>1806-1810</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2432466</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2015-10, Vol.22 (10), p.1806-1810 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_7105841 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric modeling Channel estimation Color distortion dark channel prior Deformable models haze removal Image color analysis Imaging Remote sensing Signal processing algorithms |
title | Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haze%20Removal%20for%20a%20Single%20Remote%20Sensing%20Image%20Based%20on%20Deformed%20Haze%20Imaging%20Model&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pan,%20Xiaoxi&rft.date=2015-10&rft.volume=22&rft.issue=10&rft.spage=1806&rft.epage=1810&rft.pages=1806-1810&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2432466&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2432466%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7105841&rfr_iscdi=true |