Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model

The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-10, Vol.22 (10), p.1806-1810
Hauptverfasser: Pan, Xiaoxi, Xie, Fengying, Jiang, Zhiguo, Yin, Jihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1810
container_issue 10
container_start_page 1806
container_title IEEE signal processing letters
container_volume 22
creator Pan, Xiaoxi
Xie, Fengying
Jiang, Zhiguo
Yin, Jihao
description The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.
doi_str_mv 10.1109/LSP.2015.2432466
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7105841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7105841</ieee_id><sourcerecordid>10_1109_LSP_2015_2432466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jZtePYPkL5aaUgEIFzZCfrKihpUFwhwdOT0IrTjmZn5vAxdomwQAR7nRcvCwGoFiKVIs2yIzZDpUwiZIbHowYNibVgTtlZjB8AYNCoGStW7of4K3X9l2t56AfueNFsN-3e3BEvaBtHg687tyF-6yLVvN_yOxrD3aj_BqbnFHrqa2rP2UlwbaSLw52z94f7t-UqyZ8f18ubPKlEJneJDgqVDxRq8EKJLNSI3oA3OvVOVrrSIbPBqxSUtk5Y5yFYT1LVaYVUGzlnsN-thj7GgUL5OTSdG75LhHKCUo5QyglKeYAyVq72lYaI_uMaQZkU5S-RfV1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</creator><creatorcontrib>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</creatorcontrib><description>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2432466</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric modeling ; Channel estimation ; Color distortion ; dark channel prior ; Deformable models ; haze removal ; Image color analysis ; Imaging ; Remote sensing ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2015-10, Vol.22 (10), p.1806-1810</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</citedby><cites>FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7105841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7105841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Xiaoxi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</description><subject>Atmospheric modeling</subject><subject>Channel estimation</subject><subject>Color distortion</subject><subject>dark channel prior</subject><subject>Deformable models</subject><subject>haze removal</subject><subject>Image color analysis</subject><subject>Imaging</subject><subject>Remote sensing</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jZtePYPkL5aaUgEIFzZCfrKihpUFwhwdOT0IrTjmZn5vAxdomwQAR7nRcvCwGoFiKVIs2yIzZDpUwiZIbHowYNibVgTtlZjB8AYNCoGStW7of4K3X9l2t56AfueNFsN-3e3BEvaBtHg687tyF-6yLVvN_yOxrD3aj_BqbnFHrqa2rP2UlwbaSLw52z94f7t-UqyZ8f18ubPKlEJneJDgqVDxRq8EKJLNSI3oA3OvVOVrrSIbPBqxSUtk5Y5yFYT1LVaYVUGzlnsN-thj7GgUL5OTSdG75LhHKCUo5QyglKeYAyVq72lYaI_uMaQZkU5S-RfV1c</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Pan, Xiaoxi</creator><creator>Xie, Fengying</creator><creator>Jiang, Zhiguo</creator><creator>Yin, Jihao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</title><author>Pan, Xiaoxi ; Xie, Fengying ; Jiang, Zhiguo ; Yin, Jihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7f515bfefd0b2526fd11b80b874ba3c7c7f69fb540579a29ab0f9be35d4c1ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric modeling</topic><topic>Channel estimation</topic><topic>Color distortion</topic><topic>dark channel prior</topic><topic>Deformable models</topic><topic>haze removal</topic><topic>Image color analysis</topic><topic>Imaging</topic><topic>Remote sensing</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaoxi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Xiaoxi</au><au>Xie, Fengying</au><au>Jiang, Zhiguo</au><au>Yin, Jihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2015-10</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1806</spage><epage>1810</epage><pages>1806-1810</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The contrast of remote sensing images captured in haze condition is poor, which influences their interpretation. In this letter, a novel dehazing algorithm based on the deformed haze imaging model is proposed. First, the model is deformed by introducing a translation term. Second, the atmospheric light and transmission are estimated according to the new model combined with dark channel prior. Lastly, the haze is successfully removed from remote sensing images using the proposed estimation algorithm. The estimated transmission is insensitive to the texture of ground objects, and the dehazing effect for nonuniform haze is more satisfactory than the compared method. Moreover, our approach can be used for general haze removal through adjusting the translation term. Experimental results reveal that the proposed method can recover the real scene clearly from haze remote sensing images along with the advantage of good color consistency.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2015.2432466</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2015-10, Vol.22 (10), p.1806-1810
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7105841
source IEEE Electronic Library (IEL)
subjects Atmospheric modeling
Channel estimation
Color distortion
dark channel prior
Deformable models
haze removal
Image color analysis
Imaging
Remote sensing
Signal processing algorithms
title Haze Removal for a Single Remote Sensing Image Based on Deformed Haze Imaging Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haze%20Removal%20for%20a%20Single%20Remote%20Sensing%20Image%20Based%20on%20Deformed%20Haze%20Imaging%20Model&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pan,%20Xiaoxi&rft.date=2015-10&rft.volume=22&rft.issue=10&rft.spage=1806&rft.epage=1810&rft.pages=1806-1810&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2432466&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2015_2432466%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7105841&rfr_iscdi=true