Machine learning-based VLSI cells shape function estimation

We describe in this paper a novel approach based upon machine learning for estimating layout shape functions of full-custom integrated circuit cells. A neural network is trained to estimate one dimension of cell layout from circuit netlist, a desired packing density, and prescribed values of the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1998-07, Vol.17 (7), p.613-623
Hauptverfasser: Xiao Quan Li, Jabri, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 7
container_start_page 613
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 17
creator Xiao Quan Li
Jabri, M.A.
description We describe in this paper a novel approach based upon machine learning for estimating layout shape functions of full-custom integrated circuit cells. A neural network is trained to estimate one dimension of cell layout from circuit netlist, a desired packing density, and prescribed values of the complementary dimension. The neural network is then combined with a linear function generator and a neural network that predicts the number of contacts (vias) to produce estimates of cell layout shape functions. We have experimented with this approach on an independent test set of circuits and the results are very encouraging. The resulting estimation system is very fast and can be easily incorporated into exiting floorplanning systems. An additional benefit of the the machine learning aspect is the simplicity and systematicity in incorporating into the estimation system new circuits and technology information as they become available.
doi_str_mv 10.1109/43.709400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_709400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>709400</ieee_id><sourcerecordid>26644586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-6b0102cf5cd8a47a6c7398876e4910aeb2b61fa8f2dce18c28308ac3998505cb3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKeePxLaYUMVHpSIGPtbo4p5pUOqUuB3473GVqtOddL977-kxdslhwjnYOyUnGqwCOGIjbqXOFS_4MRuB0CYH0HDKzmL8AeCqEHbE7l_RLZtAWUvYhyZ85zVGWmRf8_dZ5qhtYxaXuKbMb4PbNF3IKG6aFe7Wc3bisY10sZ9j9vn0-DF9yedvz7Ppwzx3oiw3eVkDB-F84RYGlcbSaWmN0SUpywGpFnXJPRovFo64ccJIMOiktaaAwtVyzG4G3XXf_W6Tf7Vq4i4bBuq2sUouShWmTODtALq-i7EnX637lLX_qzhUu3oqJauhnsRe70UxOmx9j8E18fAgkj3XKmFXA9YQ0eG61_gHwJVrLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26644586</pqid></control><display><type>article</type><title>Machine learning-based VLSI cells shape function estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao Quan Li ; Jabri, M.A.</creator><creatorcontrib>Xiao Quan Li ; Jabri, M.A.</creatorcontrib><description>We describe in this paper a novel approach based upon machine learning for estimating layout shape functions of full-custom integrated circuit cells. A neural network is trained to estimate one dimension of cell layout from circuit netlist, a desired packing density, and prescribed values of the complementary dimension. The neural network is then combined with a linear function generator and a neural network that predicts the number of contacts (vias) to produce estimates of cell layout shape functions. We have experimented with this approach on an independent test set of circuits and the results are very encouraging. The resulting estimation system is very fast and can be easily incorporated into exiting floorplanning systems. An additional benefit of the the machine learning aspect is the simplicity and systematicity in incorporating into the estimation system new circuits and technology information as they become available.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.709400</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit testing ; Delay estimation ; Design. Technologies. Operation analysis. Testing ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Integrated circuit layout ; Integrated circuits ; Inverters ; Machine learning ; MOS devices ; Neural networks ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Shape ; Signal generators ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1998-07, Vol.17 (7), p.613-623</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-6b0102cf5cd8a47a6c7398876e4910aeb2b61fa8f2dce18c28308ac3998505cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/709400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/709400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2399174$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao Quan Li</creatorcontrib><creatorcontrib>Jabri, M.A.</creatorcontrib><title>Machine learning-based VLSI cells shape function estimation</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>We describe in this paper a novel approach based upon machine learning for estimating layout shape functions of full-custom integrated circuit cells. A neural network is trained to estimate one dimension of cell layout from circuit netlist, a desired packing density, and prescribed values of the complementary dimension. The neural network is then combined with a linear function generator and a neural network that predicts the number of contacts (vias) to produce estimates of cell layout shape functions. We have experimented with this approach on an independent test set of circuits and the results are very encouraging. The resulting estimation system is very fast and can be easily incorporated into exiting floorplanning systems. An additional benefit of the the machine learning aspect is the simplicity and systematicity in incorporating into the estimation system new circuits and technology information as they become available.</description><subject>Applied sciences</subject><subject>Circuit testing</subject><subject>Delay estimation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit layout</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Machine learning</subject><subject>MOS devices</subject><subject>Neural networks</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Shape</subject><subject>Signal generators</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKeePxLaYUMVHpSIGPtbo4p5pUOqUuB3473GVqtOddL977-kxdslhwjnYOyUnGqwCOGIjbqXOFS_4MRuB0CYH0HDKzmL8AeCqEHbE7l_RLZtAWUvYhyZ85zVGWmRf8_dZ5qhtYxaXuKbMb4PbNF3IKG6aFe7Wc3bisY10sZ9j9vn0-DF9yedvz7Ppwzx3oiw3eVkDB-F84RYGlcbSaWmN0SUpywGpFnXJPRovFo64ccJIMOiktaaAwtVyzG4G3XXf_W6Tf7Vq4i4bBuq2sUouShWmTODtALq-i7EnX637lLX_qzhUu3oqJauhnsRe70UxOmx9j8E18fAgkj3XKmFXA9YQ0eG61_gHwJVrLA</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Xiao Quan Li</creator><creator>Jabri, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980701</creationdate><title>Machine learning-based VLSI cells shape function estimation</title><author>Xiao Quan Li ; Jabri, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-6b0102cf5cd8a47a6c7398876e4910aeb2b61fa8f2dce18c28308ac3998505cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Circuit testing</topic><topic>Delay estimation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit layout</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Machine learning</topic><topic>MOS devices</topic><topic>Neural networks</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Shape</topic><topic>Signal generators</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao Quan Li</creatorcontrib><creatorcontrib>Jabri, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao Quan Li</au><au>Jabri, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based VLSI cells shape function estimation</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1998-07-01</date><risdate>1998</risdate><volume>17</volume><issue>7</issue><spage>613</spage><epage>623</epage><pages>613-623</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>We describe in this paper a novel approach based upon machine learning for estimating layout shape functions of full-custom integrated circuit cells. A neural network is trained to estimate one dimension of cell layout from circuit netlist, a desired packing density, and prescribed values of the complementary dimension. The neural network is then combined with a linear function generator and a neural network that predicts the number of contacts (vias) to produce estimates of cell layout shape functions. We have experimented with this approach on an independent test set of circuits and the results are very encouraging. The resulting estimation system is very fast and can be easily incorporated into exiting floorplanning systems. An additional benefit of the the machine learning aspect is the simplicity and systematicity in incorporating into the estimation system new circuits and technology information as they become available.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/43.709400</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1998-07, Vol.17 (7), p.613-623
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_709400
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit testing
Delay estimation
Design. Technologies. Operation analysis. Testing
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Integrated circuit layout
Integrated circuits
Inverters
Machine learning
MOS devices
Neural networks
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Shape
Signal generators
Very large scale integration
title Machine learning-based VLSI cells shape function estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20VLSI%20cells%20shape%20function%20estimation&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Xiao%20Quan%20Li&rft.date=1998-07-01&rft.volume=17&rft.issue=7&rft.spage=613&rft.epage=623&rft.pages=613-623&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.709400&rft_dat=%3Cproquest_RIE%3E26644586%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26644586&rft_id=info:pmid/&rft_ieee_id=709400&rfr_iscdi=true