Sample Complexity of Dictionary Learning and Other Matrix Factorizations
Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis, non-negative matrix factorization, K-means clustering, and so on, rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-06, Vol.61 (6), p.3469-3486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3486 |
---|---|
container_issue | 6 |
container_start_page | 3469 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Gribonval, Remi Jenatton, Rodolphe Bach, Francis Kleinsteuber, Martin Seibert, Matthias |
description | Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis, non-negative matrix factorization, K-means clustering, and so on, rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training collection. While the idealized task would be to optimize the expected quality of the factors over the underlying distribution of training vectors, it is achieved in practice by minimizing an empirical average over the considered collection. The focus of this paper is to provide sample complexity estimates to uniformly control how much the empirical average deviates from the expected cost function. Standard arguments imply that the performance of the empirical predictor also exhibit such guarantees. The level of genericity of the approach encompasses several possible constraints on the factors (tensor product structure, shift-invariance, sparsity...), thus providing a unified perspective on the sample complexity of several widely used matrix factorization schemes. The derived generalization bounds behave proportional to (log (n)/n) 1/2 with respect to the number of samples n for the considered matrix factorization techniques. |
doi_str_mv | 10.1109/TIT.2015.2424238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7088631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7088631</ieee_id><sourcerecordid>3701035421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-66962fd7ed4e5a58b1bdb0c12cd4e876767b7876cd259d3071e12641c1e0f9603</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBk4fOvDRJk-OYzg0qOzjPIU1Tl7E1M-1k8683ZUPe4eM9ft_H40PoHvAIAMvn5Xw5IhjYiNA4mbhAA2AsTyVn9BINMAaRSkrFNbpp23VcKQMyQLMPvd1tbDLxvRxcd0x8nbw40znf6HBMCqtD45qvRDdVsuhWNiTvugvukEy16Xxwv7pH21t0VetNa-_OOkSf09flZJYWi7f5ZFykJuN5l3IuOamr3FbUMs1ECWVVYgPExIPIeZwyj2oqwmSV4RwsEE7BgMW15DgboqdT7kpv1C64bXxSee3UbFyo_oaxBAGU_GSRfTyxu-C_97bt1NrvQxPfU8AFZRJTISKFT5QJvm2Drf9jAau-WxW7VX236txttDycLM5a-4_nWAieQfYHiDRzeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684590488</pqid></control><display><type>article</type><title>Sample Complexity of Dictionary Learning and Other Matrix Factorizations</title><source>IEEE Electronic Library (IEL)</source><creator>Gribonval, Remi ; Jenatton, Rodolphe ; Bach, Francis ; Kleinsteuber, Martin ; Seibert, Matthias</creator><creatorcontrib>Gribonval, Remi ; Jenatton, Rodolphe ; Bach, Francis ; Kleinsteuber, Martin ; Seibert, Matthias</creatorcontrib><description>Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis, non-negative matrix factorization, K-means clustering, and so on, rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training collection. While the idealized task would be to optimize the expected quality of the factors over the underlying distribution of training vectors, it is achieved in practice by minimizing an empirical average over the considered collection. The focus of this paper is to provide sample complexity estimates to uniformly control how much the empirical average deviates from the expected cost function. Standard arguments imply that the performance of the empirical predictor also exhibit such guarantees. The level of genericity of the approach encompasses several possible constraints on the factors (tensor product structure, shift-invariance, sparsity...), thus providing a unified perspective on the sample complexity of several widely used matrix factorization schemes. The derived generalization bounds behave proportional to (log (n)/n) 1/2 with respect to the number of samples n for the considered matrix factorization techniques.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2424238</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Complexity theory ; Computer Science ; Dictionary learning ; Electronics ; Engineering Sciences ; Information Theory ; K-means clustering ; Machine Learning ; Mathematics ; Matrix ; non-negative matrix factorization ; Principal component analysis ; Probability distribution ; sample complexity ; Signal and Image Processing ; Signal processing ; sparse coding ; Sparse matrices ; Sparsity ; Statistics ; structured learning ; Training</subject><ispartof>IEEE transactions on information theory, 2015-06, Vol.61 (6), p.3469-3486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-66962fd7ed4e5a58b1bdb0c12cd4e876767b7876cd259d3071e12641c1e0f9603</citedby><cites>FETCH-LOGICAL-c367t-66962fd7ed4e5a58b1bdb0c12cd4e876767b7876cd259d3071e12641c1e0f9603</cites><orcidid>0000-0002-9450-8125 ; 0000-0001-8644-1058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7088631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7088631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-00918142$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gribonval, Remi</creatorcontrib><creatorcontrib>Jenatton, Rodolphe</creatorcontrib><creatorcontrib>Bach, Francis</creatorcontrib><creatorcontrib>Kleinsteuber, Martin</creatorcontrib><creatorcontrib>Seibert, Matthias</creatorcontrib><title>Sample Complexity of Dictionary Learning and Other Matrix Factorizations</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis, non-negative matrix factorization, K-means clustering, and so on, rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training collection. While the idealized task would be to optimize the expected quality of the factors over the underlying distribution of training vectors, it is achieved in practice by minimizing an empirical average over the considered collection. The focus of this paper is to provide sample complexity estimates to uniformly control how much the empirical average deviates from the expected cost function. Standard arguments imply that the performance of the empirical predictor also exhibit such guarantees. The level of genericity of the approach encompasses several possible constraints on the factors (tensor product structure, shift-invariance, sparsity...), thus providing a unified perspective on the sample complexity of several widely used matrix factorization schemes. The derived generalization bounds behave proportional to (log (n)/n) 1/2 with respect to the number of samples n for the considered matrix factorization techniques.</description><subject>Complexity theory</subject><subject>Computer Science</subject><subject>Dictionary learning</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Information Theory</subject><subject>K-means clustering</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>non-negative matrix factorization</subject><subject>Principal component analysis</subject><subject>Probability distribution</subject><subject>sample complexity</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>sparse coding</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>Statistics</subject><subject>structured learning</subject><subject>Training</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvBk4fOvDRJk-OYzg0qOzjPIU1Tl7E1M-1k8683ZUPe4eM9ft_H40PoHvAIAMvn5Xw5IhjYiNA4mbhAA2AsTyVn9BINMAaRSkrFNbpp23VcKQMyQLMPvd1tbDLxvRxcd0x8nbw40znf6HBMCqtD45qvRDdVsuhWNiTvugvukEy16Xxwv7pH21t0VetNa-_OOkSf09flZJYWi7f5ZFykJuN5l3IuOamr3FbUMs1ECWVVYgPExIPIeZwyj2oqwmSV4RwsEE7BgMW15DgboqdT7kpv1C64bXxSee3UbFyo_oaxBAGU_GSRfTyxu-C_97bt1NrvQxPfU8AFZRJTISKFT5QJvm2Drf9jAau-WxW7VX236txttDycLM5a-4_nWAieQfYHiDRzeg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gribonval, Remi</creator><creator>Jenatton, Rodolphe</creator><creator>Bach, Francis</creator><creator>Kleinsteuber, Martin</creator><creator>Seibert, Matthias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0001-8644-1058</orcidid></search><sort><creationdate>20150601</creationdate><title>Sample Complexity of Dictionary Learning and Other Matrix Factorizations</title><author>Gribonval, Remi ; Jenatton, Rodolphe ; Bach, Francis ; Kleinsteuber, Martin ; Seibert, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-66962fd7ed4e5a58b1bdb0c12cd4e876767b7876cd259d3071e12641c1e0f9603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Complexity theory</topic><topic>Computer Science</topic><topic>Dictionary learning</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Information Theory</topic><topic>K-means clustering</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>non-negative matrix factorization</topic><topic>Principal component analysis</topic><topic>Probability distribution</topic><topic>sample complexity</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>sparse coding</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>Statistics</topic><topic>structured learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gribonval, Remi</creatorcontrib><creatorcontrib>Jenatton, Rodolphe</creatorcontrib><creatorcontrib>Bach, Francis</creatorcontrib><creatorcontrib>Kleinsteuber, Martin</creatorcontrib><creatorcontrib>Seibert, Matthias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gribonval, Remi</au><au>Jenatton, Rodolphe</au><au>Bach, Francis</au><au>Kleinsteuber, Martin</au><au>Seibert, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Complexity of Dictionary Learning and Other Matrix Factorizations</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>61</volume><issue>6</issue><spage>3469</spage><epage>3486</epage><pages>3469-3486</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Many modern tools in machine learning and signal processing, such as sparse dictionary learning, principal component analysis, non-negative matrix factorization, K-means clustering, and so on, rely on the factorization of a matrix obtained by concatenating high-dimensional vectors from a training collection. While the idealized task would be to optimize the expected quality of the factors over the underlying distribution of training vectors, it is achieved in practice by minimizing an empirical average over the considered collection. The focus of this paper is to provide sample complexity estimates to uniformly control how much the empirical average deviates from the expected cost function. Standard arguments imply that the performance of the empirical predictor also exhibit such guarantees. The level of genericity of the approach encompasses several possible constraints on the factors (tensor product structure, shift-invariance, sparsity...), thus providing a unified perspective on the sample complexity of several widely used matrix factorization schemes. The derived generalization bounds behave proportional to (log (n)/n) 1/2 with respect to the number of samples n for the considered matrix factorization techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2424238</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><orcidid>https://orcid.org/0000-0001-8644-1058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-06, Vol.61 (6), p.3469-3486 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_7088631 |
source | IEEE Electronic Library (IEL) |
subjects | Complexity theory Computer Science Dictionary learning Electronics Engineering Sciences Information Theory K-means clustering Machine Learning Mathematics Matrix non-negative matrix factorization Principal component analysis Probability distribution sample complexity Signal and Image Processing Signal processing sparse coding Sparse matrices Sparsity Statistics structured learning Training |
title | Sample Complexity of Dictionary Learning and Other Matrix Factorizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Complexity%20of%20Dictionary%20Learning%20and%20Other%20Matrix%20Factorizations&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gribonval,%20Remi&rft.date=2015-06-01&rft.volume=61&rft.issue=6&rft.spage=3469&rft.epage=3486&rft.pages=3469-3486&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2424238&rft_dat=%3Cproquest_RIE%3E3701035421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684590488&rft_id=info:pmid/&rft_ieee_id=7088631&rfr_iscdi=true |