Very High Bit-Rate Distance Product Using High-Power Single-Mode 850-nm VCSEL With Discrete Multitone Modulation Formats Through OM4 Multimode Fiber
In order to investigate the tradeoff between optical spectral width and modulation speed of 850-nm Zn-diffusion vertical-cavity surface-emitting laser (VCSEL) and its influence on the performance of discrete multitone (DMT) modulation, two kinds of high-speed VCSEL structures with different cavity l...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2015-11, Vol.21 (6), p.444-452 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to investigate the tradeoff between optical spectral width and modulation speed of 850-nm Zn-diffusion vertical-cavity surface-emitting laser (VCSEL) and its influence on the performance of discrete multitone (DMT) modulation, two kinds of high-speed VCSEL structures with different cavity lengths (λ/2 and 3λ/2) are studied. By shortening the cavity length to λ/2, allocating the oxide layer in the standing-wave peak, and performing a Zn-diffusion aperture in our VCSEL structure, stable dual mode in the output optical spectra across the full range of bias currents with good high-speed performance (~16-GHz bandwidth) can be achieved. Compared with its multimode reference, it shows far less roll-off with regard to the maximum data rate versus transmission distance over OM4 multimode fibers under forward error correction (FEC) threshold (BER 35 dB) with high available power can be achieved over the full range of bias currents. Although such device shows a smaller 3-dB electrical-to-optical bandwidth (12 versus 16 GHz) than that of the dual-mode one, it exhibits a superior transmission performance by use of DMT modulation format. A record high bit-rate distance product (107.6 Gb/s·km) at nearly 50-Gb/s transmission under FEC threshold (BER |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2015.2421324 |