A genetic algorithm for scheduling tasks in a real-time distributed system

Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and sched...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Monnier, Y., Beauvais, J.-P., Deplanche, A.-M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714 vol.2
container_issue
container_start_page 708
container_title
container_volume 2
creator Monnier, Y.
Beauvais, J.-P.
Deplanche, A.-M.
description Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.
doi_str_mv 10.1109/EURMIC.1998.708092
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_708092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>708092</ieee_id><sourcerecordid>708092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</originalsourceid><addsrcrecordid>eNot0MtOAjEUgOHGS-IEeQFWfYHB03Z6OUtCUDEYEyNrUjqnQ3UGzLQseHsXuPp33-JnbCZgLgTg02r7-b5ezgWim1twgPKGVVJZU6MGfcumaB044YwzjbF3rBLgsDYa1AOb5vwNAAKUVk1TsbcF7-hIJQXu--40pnIYeDyNPIcDtec-HTtefP7JPB255yP5vi5pIN6mXMa0Pxdqeb7kQsMju4--zzT974Rtn1dfy9d68_GyXi42dZBSldpTC9CEaPaChLLemsYh6EDeQnBir730KkREL4SJGFqKkqSO0piABlBN2OzqJiLa_Y5p8ONldx2h_gB1v1BS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</creator><creatorcontrib>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</creatorcontrib><description>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</description><identifier>ISSN: 1089-6503</identifier><identifier>ISBN: 9780818686467</identifier><identifier>ISBN: 0818686464</identifier><identifier>EISSN: 2376-9505</identifier><identifier>DOI: 10.1109/EURMIC.1998.708092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Control systems ; Delay ; Distributed computing ; Genetic algorithms ; Job shop scheduling ; Process control ; Processor scheduling ; Real time systems ; Simulated annealing</subject><ispartof>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204), 1998, Vol.2, p.708-714 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/708092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/708092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Monnier, Y.</creatorcontrib><creatorcontrib>Beauvais, J.-P.</creatorcontrib><creatorcontrib>Deplanche, A.-M.</creatorcontrib><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><title>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204)</title><addtitle>EURMIC</addtitle><description>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</description><subject>Clustering algorithms</subject><subject>Control systems</subject><subject>Delay</subject><subject>Distributed computing</subject><subject>Genetic algorithms</subject><subject>Job shop scheduling</subject><subject>Process control</subject><subject>Processor scheduling</subject><subject>Real time systems</subject><subject>Simulated annealing</subject><issn>1089-6503</issn><issn>2376-9505</issn><isbn>9780818686467</isbn><isbn>0818686464</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0MtOAjEUgOHGS-IEeQFWfYHB03Z6OUtCUDEYEyNrUjqnQ3UGzLQseHsXuPp33-JnbCZgLgTg02r7-b5ezgWim1twgPKGVVJZU6MGfcumaB044YwzjbF3rBLgsDYa1AOb5vwNAAKUVk1TsbcF7-hIJQXu--40pnIYeDyNPIcDtec-HTtefP7JPB255yP5vi5pIN6mXMa0Pxdqeb7kQsMju4--zzT974Rtn1dfy9d68_GyXi42dZBSldpTC9CEaPaChLLemsYh6EDeQnBir730KkREL4SJGFqKkqSO0piABlBN2OzqJiLa_Y5p8ONldx2h_gB1v1BS</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Monnier, Y.</creator><creator>Beauvais, J.-P.</creator><creator>Deplanche, A.-M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><author>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Clustering algorithms</topic><topic>Control systems</topic><topic>Delay</topic><topic>Distributed computing</topic><topic>Genetic algorithms</topic><topic>Job shop scheduling</topic><topic>Process control</topic><topic>Processor scheduling</topic><topic>Real time systems</topic><topic>Simulated annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Monnier, Y.</creatorcontrib><creatorcontrib>Beauvais, J.-P.</creatorcontrib><creatorcontrib>Deplanche, A.-M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monnier, Y.</au><au>Beauvais, J.-P.</au><au>Deplanche, A.-M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A genetic algorithm for scheduling tasks in a real-time distributed system</atitle><btitle>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204)</btitle><stitle>EURMIC</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>708</spage><epage>714 vol.2</epage><pages>708-714 vol.2</pages><issn>1089-6503</issn><eissn>2376-9505</eissn><isbn>9780818686467</isbn><isbn>0818686464</isbn><abstract>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</abstract><pub>IEEE</pub><doi>10.1109/EURMIC.1998.708092</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-6503
ispartof Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204), 1998, Vol.2, p.708-714 vol.2
issn 1089-6503
2376-9505
language eng
recordid cdi_ieee_primary_708092
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Control systems
Delay
Distributed computing
Genetic algorithms
Job shop scheduling
Process control
Processor scheduling
Real time systems
Simulated annealing
title A genetic algorithm for scheduling tasks in a real-time distributed system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20genetic%20algorithm%20for%20scheduling%20tasks%20in%20a%20real-time%20distributed%20system&rft.btitle=Proceedings.%2024th%20EUROMICRO%20Conference%20(Cat.%20No.98EX204)&rft.au=Monnier,%20Y.&rft.date=1998&rft.volume=2&rft.spage=708&rft.epage=714%20vol.2&rft.pages=708-714%20vol.2&rft.issn=1089-6503&rft.eissn=2376-9505&rft.isbn=9780818686467&rft.isbn_list=0818686464&rft_id=info:doi/10.1109/EURMIC.1998.708092&rft_dat=%3Cieee_6IE%3E708092%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=708092&rfr_iscdi=true