A genetic algorithm for scheduling tasks in a real-time distributed system
Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and sched...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 714 vol.2 |
---|---|
container_issue | |
container_start_page | 708 |
container_title | |
container_volume | 2 |
creator | Monnier, Y. Beauvais, J.-P. Deplanche, A.-M. |
description | Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm. |
doi_str_mv | 10.1109/EURMIC.1998.708092 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_708092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>708092</ieee_id><sourcerecordid>708092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</originalsourceid><addsrcrecordid>eNot0MtOAjEUgOHGS-IEeQFWfYHB03Z6OUtCUDEYEyNrUjqnQ3UGzLQseHsXuPp33-JnbCZgLgTg02r7-b5ezgWim1twgPKGVVJZU6MGfcumaB044YwzjbF3rBLgsDYa1AOb5vwNAAKUVk1TsbcF7-hIJQXu--40pnIYeDyNPIcDtec-HTtefP7JPB255yP5vi5pIN6mXMa0Pxdqeb7kQsMju4--zzT974Rtn1dfy9d68_GyXi42dZBSldpTC9CEaPaChLLemsYh6EDeQnBir730KkREL4SJGFqKkqSO0piABlBN2OzqJiLa_Y5p8ONldx2h_gB1v1BS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</creator><creatorcontrib>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</creatorcontrib><description>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</description><identifier>ISSN: 1089-6503</identifier><identifier>ISBN: 9780818686467</identifier><identifier>ISBN: 0818686464</identifier><identifier>EISSN: 2376-9505</identifier><identifier>DOI: 10.1109/EURMIC.1998.708092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Control systems ; Delay ; Distributed computing ; Genetic algorithms ; Job shop scheduling ; Process control ; Processor scheduling ; Real time systems ; Simulated annealing</subject><ispartof>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204), 1998, Vol.2, p.708-714 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/708092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/708092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Monnier, Y.</creatorcontrib><creatorcontrib>Beauvais, J.-P.</creatorcontrib><creatorcontrib>Deplanche, A.-M.</creatorcontrib><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><title>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204)</title><addtitle>EURMIC</addtitle><description>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</description><subject>Clustering algorithms</subject><subject>Control systems</subject><subject>Delay</subject><subject>Distributed computing</subject><subject>Genetic algorithms</subject><subject>Job shop scheduling</subject><subject>Process control</subject><subject>Processor scheduling</subject><subject>Real time systems</subject><subject>Simulated annealing</subject><issn>1089-6503</issn><issn>2376-9505</issn><isbn>9780818686467</isbn><isbn>0818686464</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0MtOAjEUgOHGS-IEeQFWfYHB03Z6OUtCUDEYEyNrUjqnQ3UGzLQseHsXuPp33-JnbCZgLgTg02r7-b5ezgWim1twgPKGVVJZU6MGfcumaB044YwzjbF3rBLgsDYa1AOb5vwNAAKUVk1TsbcF7-hIJQXu--40pnIYeDyNPIcDtec-HTtefP7JPB255yP5vi5pIN6mXMa0Pxdqeb7kQsMju4--zzT974Rtn1dfy9d68_GyXi42dZBSldpTC9CEaPaChLLemsYh6EDeQnBir730KkREL4SJGFqKkqSO0piABlBN2OzqJiLa_Y5p8ONldx2h_gB1v1BS</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Monnier, Y.</creator><creator>Beauvais, J.-P.</creator><creator>Deplanche, A.-M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>A genetic algorithm for scheduling tasks in a real-time distributed system</title><author>Monnier, Y. ; Beauvais, J.-P. ; Deplanche, A.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-aed004cf6b1e137a7648905cea70c81b5a2a3cf99a116f9cdef2e25f266c96093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Clustering algorithms</topic><topic>Control systems</topic><topic>Delay</topic><topic>Distributed computing</topic><topic>Genetic algorithms</topic><topic>Job shop scheduling</topic><topic>Process control</topic><topic>Processor scheduling</topic><topic>Real time systems</topic><topic>Simulated annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Monnier, Y.</creatorcontrib><creatorcontrib>Beauvais, J.-P.</creatorcontrib><creatorcontrib>Deplanche, A.-M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monnier, Y.</au><au>Beauvais, J.-P.</au><au>Deplanche, A.-M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A genetic algorithm for scheduling tasks in a real-time distributed system</atitle><btitle>Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204)</btitle><stitle>EURMIC</stitle><date>1998</date><risdate>1998</risdate><volume>2</volume><spage>708</spage><epage>714 vol.2</epage><pages>708-714 vol.2</pages><issn>1089-6503</issn><eissn>2376-9505</eissn><isbn>9780818686467</isbn><isbn>0818686464</isbn><abstract>Real time systems must often handle several independent periodic macro tasks, each one represented by a general task graph, including communications and precedence constraints. The implementation of such applications on a distributed system communicating via a bus, requires task assignment and scheduling as well as the taking into account of the communication delays. As periodicity implies macro task deadlines, the problem of finding a feasible schedule is critical. The paper addresses this NP hard problem resolution, by using a genetic algorithm under offline and non preemptive scheduling assumptions. The algorithm performance is evaluated on a large simulation set, and compared to classical list based algorithms, a simulated annealing algorithm and a specific clustering algorithm.</abstract><pub>IEEE</pub><doi>10.1109/EURMIC.1998.708092</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-6503 |
ispartof | Proceedings. 24th EUROMICRO Conference (Cat. No.98EX204), 1998, Vol.2, p.708-714 vol.2 |
issn | 1089-6503 2376-9505 |
language | eng |
recordid | cdi_ieee_primary_708092 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Control systems Delay Distributed computing Genetic algorithms Job shop scheduling Process control Processor scheduling Real time systems Simulated annealing |
title | A genetic algorithm for scheduling tasks in a real-time distributed system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20genetic%20algorithm%20for%20scheduling%20tasks%20in%20a%20real-time%20distributed%20system&rft.btitle=Proceedings.%2024th%20EUROMICRO%20Conference%20(Cat.%20No.98EX204)&rft.au=Monnier,%20Y.&rft.date=1998&rft.volume=2&rft.spage=708&rft.epage=714%20vol.2&rft.pages=708-714%20vol.2&rft.issn=1089-6503&rft.eissn=2376-9505&rft.isbn=9780818686467&rft.isbn_list=0818686464&rft_id=info:doi/10.1109/EURMIC.1998.708092&rft_dat=%3Cieee_6IE%3E708092%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=708092&rfr_iscdi=true |