Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming

Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2015-05, Vol.63 (5), p.1533-1540
Hauptverfasser: Falsafain, Hossein, Mousavi, Sayyed Rasoul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1540
container_issue 5
container_start_page 1533
container_title IEEE transactions on communications
container_volume 63
creator Falsafain, Hossein
Mousavi, Sayyed Rasoul
description Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.
doi_str_mv 10.1109/TCOMM.2015.2418263
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7073646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7073646</ieee_id><sourcerecordid>10_1109_TCOMM_2015_2418263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</originalsourceid><addsrcrecordid>eNo9kNFOwjAYRhujiYi-gN70BYZ_263tLs2CQgKBBEy8W7ru76zCRrrGwNsLQrz6br5zLg4hjwxGjEH-vC4W8_mIA8tGPGWaS3FFBizLdAI6U9dkAJBDIpXSt-Su778AIAUhBuRjFbvdzrcNXWGk443f-tZE37W0OtClCT4ekuIT7Tedmxj8no73Edv-dPjxhk7biA0GOvMtmkCXoWuC2R4dzT25cWbT48Nlh-T9dbwuJsls8TYtXmaJFULExNVS1toILbirpINcVsJyhS7LbS3BalZXyFgKNodKu-M3A5PWUjknXaq5GBJ-9trQ9X1AV-6C35pwKBmUpzblX5vy1Ka8tDlCT2fII-I_oEAJmUrxC5MdYak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</creator><creatorcontrib>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</creatorcontrib><description>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2015.2418263</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary erasure channel ; Decoding ; Equations ; error floor ; Integer linear programming ; Iterative decoding ; LDPC code ; Linear programming ; Mathematical model ; stopping set</subject><ispartof>IEEE transactions on communications, 2015-05, Vol.63 (5), p.1533-1540</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</citedby><cites>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7073646$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7073646$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falsafain, Hossein</creatorcontrib><creatorcontrib>Mousavi, Sayyed Rasoul</creatorcontrib><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</description><subject>Binary erasure channel</subject><subject>Decoding</subject><subject>Equations</subject><subject>error floor</subject><subject>Integer linear programming</subject><subject>Iterative decoding</subject><subject>LDPC code</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>stopping set</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFOwjAYRhujiYi-gN70BYZ_263tLs2CQgKBBEy8W7ru76zCRrrGwNsLQrz6br5zLg4hjwxGjEH-vC4W8_mIA8tGPGWaS3FFBizLdAI6U9dkAJBDIpXSt-Su778AIAUhBuRjFbvdzrcNXWGk443f-tZE37W0OtClCT4ekuIT7Tedmxj8no73Edv-dPjxhk7biA0GOvMtmkCXoWuC2R4dzT25cWbT48Nlh-T9dbwuJsls8TYtXmaJFULExNVS1toILbirpINcVsJyhS7LbS3BalZXyFgKNodKu-M3A5PWUjknXaq5GBJ-9trQ9X1AV-6C35pwKBmUpzblX5vy1Ka8tDlCT2fII-I_oEAJmUrxC5MdYak</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Falsafain, Hossein</creator><creator>Mousavi, Sayyed Rasoul</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201505</creationdate><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><author>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binary erasure channel</topic><topic>Decoding</topic><topic>Equations</topic><topic>error floor</topic><topic>Integer linear programming</topic><topic>Iterative decoding</topic><topic>LDPC code</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>stopping set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsafain, Hossein</creatorcontrib><creatorcontrib>Mousavi, Sayyed Rasoul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falsafain, Hossein</au><au>Mousavi, Sayyed Rasoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2015-05</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1533</spage><epage>1540</epage><pages>1533-1540</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2015.2418263</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2015-05, Vol.63 (5), p.1533-1540
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_7073646
source IEEE Electronic Library (IEL)
subjects Binary erasure channel
Decoding
Equations
error floor
Integer linear programming
Iterative decoding
LDPC code
Linear programming
Mathematical model
stopping set
title Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stopping%20Set%20Elimination%20by%20Parity-Check%20Matrix%20Extension%20via%20Integer%20Linear%20Programming&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Falsafain,%20Hossein&rft.date=2015-05&rft.volume=63&rft.issue=5&rft.spage=1533&rft.epage=1540&rft.pages=1533-1540&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2015.2418263&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2015_2418263%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7073646&rfr_iscdi=true