Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming
Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2015-05, Vol.63 (5), p.1533-1540 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1540 |
---|---|
container_issue | 5 |
container_start_page | 1533 |
container_title | IEEE transactions on communications |
container_volume | 63 |
creator | Falsafain, Hossein Mousavi, Sayyed Rasoul |
description | Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets. |
doi_str_mv | 10.1109/TCOMM.2015.2418263 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7073646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7073646</ieee_id><sourcerecordid>10_1109_TCOMM_2015_2418263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</originalsourceid><addsrcrecordid>eNo9kNFOwjAYRhujiYi-gN70BYZ_263tLs2CQgKBBEy8W7ru76zCRrrGwNsLQrz6br5zLg4hjwxGjEH-vC4W8_mIA8tGPGWaS3FFBizLdAI6U9dkAJBDIpXSt-Su778AIAUhBuRjFbvdzrcNXWGk443f-tZE37W0OtClCT4ekuIT7Tedmxj8no73Edv-dPjxhk7biA0GOvMtmkCXoWuC2R4dzT25cWbT48Nlh-T9dbwuJsls8TYtXmaJFULExNVS1toILbirpINcVsJyhS7LbS3BalZXyFgKNodKu-M3A5PWUjknXaq5GBJ-9trQ9X1AV-6C35pwKBmUpzblX5vy1Ka8tDlCT2fII-I_oEAJmUrxC5MdYak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><source>IEEE Electronic Library (IEL)</source><creator>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</creator><creatorcontrib>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</creatorcontrib><description>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2015.2418263</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary erasure channel ; Decoding ; Equations ; error floor ; Integer linear programming ; Iterative decoding ; LDPC code ; Linear programming ; Mathematical model ; stopping set</subject><ispartof>IEEE transactions on communications, 2015-05, Vol.63 (5), p.1533-1540</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</citedby><cites>FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7073646$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7073646$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falsafain, Hossein</creatorcontrib><creatorcontrib>Mousavi, Sayyed Rasoul</creatorcontrib><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</description><subject>Binary erasure channel</subject><subject>Decoding</subject><subject>Equations</subject><subject>error floor</subject><subject>Integer linear programming</subject><subject>Iterative decoding</subject><subject>LDPC code</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>stopping set</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFOwjAYRhujiYi-gN70BYZ_263tLs2CQgKBBEy8W7ru76zCRrrGwNsLQrz6br5zLg4hjwxGjEH-vC4W8_mIA8tGPGWaS3FFBizLdAI6U9dkAJBDIpXSt-Su778AIAUhBuRjFbvdzrcNXWGk443f-tZE37W0OtClCT4ekuIT7Tedmxj8no73Edv-dPjxhk7biA0GOvMtmkCXoWuC2R4dzT25cWbT48Nlh-T9dbwuJsls8TYtXmaJFULExNVS1toILbirpINcVsJyhS7LbS3BalZXyFgKNodKu-M3A5PWUjknXaq5GBJ-9trQ9X1AV-6C35pwKBmUpzblX5vy1Ka8tDlCT2fII-I_oEAJmUrxC5MdYak</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Falsafain, Hossein</creator><creator>Mousavi, Sayyed Rasoul</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201505</creationdate><title>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</title><author>Falsafain, Hossein ; Mousavi, Sayyed Rasoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fd66d8a3832fb6f096b3c27ef59cd60c81dbe1140c90b8f6d850a4d67ff6f4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binary erasure channel</topic><topic>Decoding</topic><topic>Equations</topic><topic>error floor</topic><topic>Integer linear programming</topic><topic>Iterative decoding</topic><topic>LDPC code</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>stopping set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falsafain, Hossein</creatorcontrib><creatorcontrib>Mousavi, Sayyed Rasoul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falsafain, Hossein</au><au>Mousavi, Sayyed Rasoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2015-05</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1533</spage><epage>1540</epage><pages>1533-1540</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Error-rate floor phenomenon is known to be a serious impediment to the use of low-density parity-check (LDPC) codes for some practical applications that demand high data reliability. In the case of binary erasure channels (BECs), certain error-prone patterns, known as stopping sets, are proven to cause this performance degradation. A possible approach to diminish this drawback over BECs is to eliminate stopping sets by parity-check matrix extension. Given a parity-check matrix H, and a list L of its stopping sets, we present an integer linear programming (ILP) formulation to find a parity-check equation which eliminates the maximum number of stopping sets in L. One of the distinguishing advantages of the proposed scheme is its flexibility for modifications such as: limiting the weight of the new parity-check row, making the new row redundant or linearly independent, 4-cycle avoidance, and taking into account the sizes of stopping sets. Armed with these adjustments, the method can provide good performance improvements, as evidenced by simulation results. Furthermore, for a given Q ∈ N, by extending the basic formulation, we provide an ILP formulation for finding a set of size Q of parity-check equations which can best eliminate the stopping sets in L, among all such sets.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2015.2418263</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2015-05, Vol.63 (5), p.1533-1540 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_7073646 |
source | IEEE Electronic Library (IEL) |
subjects | Binary erasure channel Decoding Equations error floor Integer linear programming Iterative decoding LDPC code Linear programming Mathematical model stopping set |
title | Stopping Set Elimination by Parity-Check Matrix Extension via Integer Linear Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stopping%20Set%20Elimination%20by%20Parity-Check%20Matrix%20Extension%20via%20Integer%20Linear%20Programming&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Falsafain,%20Hossein&rft.date=2015-05&rft.volume=63&rft.issue=5&rft.spage=1533&rft.epage=1540&rft.pages=1533-1540&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2015.2418263&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2015_2418263%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7073646&rfr_iscdi=true |