The Non-Regular CEO Problem
We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-05, Vol.61 (5), p.2764-2775 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2775 |
---|---|
container_issue | 5 |
container_start_page | 2764 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Vempaty, Aditya Varshney, Lav R. |
description | We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound. |
doi_str_mv | 10.1109/TIT.2015.2417154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7069217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7069217</ieee_id><sourcerecordid>3669037561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRMFbvQi8Bz4k7m92d7FFC1UKxIvG8ZNNZbUmbutse_PempHgavuF9M_AYuweeA3DzWM_rXHBQuZCAoOQFS0ApzIxW8pIlnEOZGSnLa3YT42aIUoFI2LT-pvSt32Uf9HXsmpBWs2X6HnrX0faWXfmmi3R3nhP2-Tyrq9dssXyZV0-LrBUGDplC8CssjKPGaVN6UTjS3hscdqUDbD0pBb4QDr1bKYONUIQcDDhf-qIpJuxhvLsP_c-R4sFu-mPYDS8taNRSoyj5QPGRakMfYyBv92G9bcKvBW5PCuygwJ4U2LOCoTIdK2si-seRayMAiz_j8lSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676467280</pqid></control><display><type>article</type><title>The Non-Regular CEO Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Vempaty, Aditya ; Varshney, Lav R.</creator><creatorcontrib>Vempaty, Aditya ; Varshney, Lav R.</creatorcontrib><description>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2417154</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chazan-Zakai-Ziv bound ; Convergence ; Decoding ; Density ; Electrical engineering ; Entropy ; Indexes ; mean-square error ; midrange estimator ; multiterminal source coding ; Normal distribution ; Probability ; Probability density function ; Quantization (signal) ; Random variables ; Source coding</subject><ispartof>IEEE transactions on information theory, 2015-05, Vol.61 (5), p.2764-2775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</citedby><cites>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7069217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7069217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><title>The Non-Regular CEO Problem</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</description><subject>Chazan-Zakai-Ziv bound</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Density</subject><subject>Electrical engineering</subject><subject>Entropy</subject><subject>Indexes</subject><subject>mean-square error</subject><subject>midrange estimator</subject><subject>multiterminal source coding</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Quantization (signal)</subject><subject>Random variables</subject><subject>Source coding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRMFbvQi8Bz4k7m92d7FFC1UKxIvG8ZNNZbUmbutse_PempHgavuF9M_AYuweeA3DzWM_rXHBQuZCAoOQFS0ApzIxW8pIlnEOZGSnLa3YT42aIUoFI2LT-pvSt32Uf9HXsmpBWs2X6HnrX0faWXfmmi3R3nhP2-Tyrq9dssXyZV0-LrBUGDplC8CssjKPGaVN6UTjS3hscdqUDbD0pBb4QDr1bKYONUIQcDDhf-qIpJuxhvLsP_c-R4sFu-mPYDS8taNRSoyj5QPGRakMfYyBv92G9bcKvBW5PCuygwJ4U2LOCoTIdK2si-seRayMAiz_j8lSw</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Vempaty, Aditya</creator><creator>Varshney, Lav R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>The Non-Regular CEO Problem</title><author>Vempaty, Aditya ; Varshney, Lav R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chazan-Zakai-Ziv bound</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Density</topic><topic>Electrical engineering</topic><topic>Entropy</topic><topic>Indexes</topic><topic>mean-square error</topic><topic>midrange estimator</topic><topic>multiterminal source coding</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Quantization (signal)</topic><topic>Random variables</topic><topic>Source coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vempaty, Aditya</au><au>Varshney, Lav R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Non-Regular CEO Problem</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-05</date><risdate>2015</risdate><volume>61</volume><issue>5</issue><spage>2764</spage><epage>2775</epage><pages>2764-2775</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2417154</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-05, Vol.61 (5), p.2764-2775 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_7069217 |
source | IEEE Electronic Library (IEL) |
subjects | Chazan-Zakai-Ziv bound Convergence Decoding Density Electrical engineering Entropy Indexes mean-square error midrange estimator multiterminal source coding Normal distribution Probability Probability density function Quantization (signal) Random variables Source coding |
title | The Non-Regular CEO Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Non-Regular%20CEO%20Problem&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Vempaty,%20Aditya&rft.date=2015-05&rft.volume=61&rft.issue=5&rft.spage=2764&rft.epage=2775&rft.pages=2764-2775&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2417154&rft_dat=%3Cproquest_RIE%3E3669037561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676467280&rft_id=info:pmid/&rft_ieee_id=7069217&rfr_iscdi=true |