The Non-Regular CEO Problem

We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-05, Vol.61 (5), p.2764-2775
Hauptverfasser: Vempaty, Aditya, Varshney, Lav R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2775
container_issue 5
container_start_page 2764
container_title IEEE transactions on information theory
container_volume 61
creator Vempaty, Aditya
Varshney, Lav R.
description We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.
doi_str_mv 10.1109/TIT.2015.2417154
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7069217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7069217</ieee_id><sourcerecordid>3669037561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRMFbvQi8Bz4k7m92d7FFC1UKxIvG8ZNNZbUmbutse_PempHgavuF9M_AYuweeA3DzWM_rXHBQuZCAoOQFS0ApzIxW8pIlnEOZGSnLa3YT42aIUoFI2LT-pvSt32Uf9HXsmpBWs2X6HnrX0faWXfmmi3R3nhP2-Tyrq9dssXyZV0-LrBUGDplC8CssjKPGaVN6UTjS3hscdqUDbD0pBb4QDr1bKYONUIQcDDhf-qIpJuxhvLsP_c-R4sFu-mPYDS8taNRSoyj5QPGRakMfYyBv92G9bcKvBW5PCuygwJ4U2LOCoTIdK2si-seRayMAiz_j8lSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676467280</pqid></control><display><type>article</type><title>The Non-Regular CEO Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Vempaty, Aditya ; Varshney, Lav R.</creator><creatorcontrib>Vempaty, Aditya ; Varshney, Lav R.</creatorcontrib><description>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2417154</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chazan-Zakai-Ziv bound ; Convergence ; Decoding ; Density ; Electrical engineering ; Entropy ; Indexes ; mean-square error ; midrange estimator ; multiterminal source coding ; Normal distribution ; Probability ; Probability density function ; Quantization (signal) ; Random variables ; Source coding</subject><ispartof>IEEE transactions on information theory, 2015-05, Vol.61 (5), p.2764-2775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</citedby><cites>FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7069217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7069217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><title>The Non-Regular CEO Problem</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</description><subject>Chazan-Zakai-Ziv bound</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Density</subject><subject>Electrical engineering</subject><subject>Entropy</subject><subject>Indexes</subject><subject>mean-square error</subject><subject>midrange estimator</subject><subject>multiterminal source coding</subject><subject>Normal distribution</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Quantization (signal)</subject><subject>Random variables</subject><subject>Source coding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRMFbvQi8Bz4k7m92d7FFC1UKxIvG8ZNNZbUmbutse_PempHgavuF9M_AYuweeA3DzWM_rXHBQuZCAoOQFS0ApzIxW8pIlnEOZGSnLa3YT42aIUoFI2LT-pvSt32Uf9HXsmpBWs2X6HnrX0faWXfmmi3R3nhP2-Tyrq9dssXyZV0-LrBUGDplC8CssjKPGaVN6UTjS3hscdqUDbD0pBb4QDr1bKYONUIQcDDhf-qIpJuxhvLsP_c-R4sFu-mPYDS8taNRSoyj5QPGRakMfYyBv92G9bcKvBW5PCuygwJ4U2LOCoTIdK2si-seRayMAiz_j8lSw</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Vempaty, Aditya</creator><creator>Varshney, Lav R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>The Non-Regular CEO Problem</title><author>Vempaty, Aditya ; Varshney, Lav R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-571fd739beab698f23be6ff977398b17cfe551f32b7fbd597a25e70191bf8f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chazan-Zakai-Ziv bound</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Density</topic><topic>Electrical engineering</topic><topic>Entropy</topic><topic>Indexes</topic><topic>mean-square error</topic><topic>midrange estimator</topic><topic>multiterminal source coding</topic><topic>Normal distribution</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Quantization (signal)</topic><topic>Random variables</topic><topic>Source coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vempaty, Aditya</creatorcontrib><creatorcontrib>Varshney, Lav R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vempaty, Aditya</au><au>Varshney, Lav R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Non-Regular CEO Problem</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-05</date><risdate>2015</risdate><volume>61</volume><issue>5</issue><spage>2764</spage><epage>2775</epage><pages>2764-2775</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the CEO problem for non-regular source distributions (such as uniform or truncated Gaussian). A group of agents observe independently corrupted versions of data and transmit coded versions over rate-limited links to a CEO. The CEO then estimates the underlying data based on the received coded observations. Agents are not allowed to convene before transmitting their observations. This formulation is motivated by the practical problem of a firm's CEO estimating (non-regular) beliefs about a sequence of events, before acting on them. Agents' observations are modeled as jointly distributed with the underlying data through a given conditional probability density function. We study the asymptotic behavior of the minimum achievable mean squared error distortion at the CEO in the limit when the number of agents L and the sum rate R tend to infinity. We establish a 1/R 2 convergence of the distortion, an intermediate regime of performance between the exponential behavior in discrete CEO problems [Berger, Zhang, and Viswanathan (1996)], and the 1/R behavior in Gaussian CEO problems [Viswanathan and Berger (1997)]. Achievability is proved by a layered architecture with scalar quantization, distributed entropy coding, and midrange estimation. The converse is proved using the Bayesian Chazan-Zakai-Ziv bound.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2417154</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-05, Vol.61 (5), p.2764-2775
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7069217
source IEEE Electronic Library (IEL)
subjects Chazan-Zakai-Ziv bound
Convergence
Decoding
Density
Electrical engineering
Entropy
Indexes
mean-square error
midrange estimator
multiterminal source coding
Normal distribution
Probability
Probability density function
Quantization (signal)
Random variables
Source coding
title The Non-Regular CEO Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Non-Regular%20CEO%20Problem&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Vempaty,%20Aditya&rft.date=2015-05&rft.volume=61&rft.issue=5&rft.spage=2764&rft.epage=2775&rft.pages=2764-2775&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2417154&rft_dat=%3Cproquest_RIE%3E3669037561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676467280&rft_id=info:pmid/&rft_ieee_id=7069217&rfr_iscdi=true