Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition

This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2015-07, Vol.6 (3), p.261-271
Hauptverfasser: Wang, Jia-Ching, Lee, Yuan-Shan, Chin, Yu-Hao, Chen, Ying-Ren, Hsieh, Wen-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 3
container_start_page 261
container_title IEEE transactions on affective computing
container_volume 6
creator Wang, Jia-Ching
Lee, Yuan-Shan
Chin, Yu-Hao
Chen, Ying-Ren
Hsieh, Wen-Chi
description This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.
doi_str_mv 10.1109/TAFFC.2015.2415212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7064768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7064768</ieee_id><sourcerecordid>3931979501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiQT5A7pp4nqwzyldEuShgWgMrptO546UDBTbmUT_vYMQ493cszjn3pMPoVtKhpQS_bAez2aTISNUDpmgklF2gXpUC51xIuTlP32NBiltSTec85ypHnpeeIg2uo13tsaPPnq3qaHBrzE4SAmv_FfTRsCrUEKNqxDxqk3e4ekuND7s8Ru48LH3R32DripbJxicdx-9z6brySJbvsyfJuNl5nhOmww0gBWaFoTkvOCl4l1xKpUoKilGAgogJaEaKltpBlxZWQnryhykIgXVmvfR_enuIYbPFlJjtqGN--6loUpqSYjUeediJ5eLIaUIlTlEv7Px21BijtjMLzZzxGbO2LrQ3SnkAeAvoEguVD7iP9omaGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759500596</pqid></control><display><type>article</type><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</creator><creatorcontrib>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</creatorcontrib><description>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2015.2415212</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Context ; Data models ; Discriminant analysis ; Discriminant method ; Emotion recognition ; hierarchical Dirichlet process mixture model ; Linear discriminant analysis ; music annotation and retrieval ; music emotion recognition ; Semantics ; Testing</subject><ispartof>IEEE transactions on affective computing, 2015-07, Vol.6 (3), p.261-271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</citedby><cites>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7064768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7064768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jia-Ching</creatorcontrib><creatorcontrib>Lee, Yuan-Shan</creatorcontrib><creatorcontrib>Chin, Yu-Hao</creatorcontrib><creatorcontrib>Chen, Ying-Ren</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</description><subject>Computational modeling</subject><subject>Context</subject><subject>Data models</subject><subject>Discriminant analysis</subject><subject>Discriminant method</subject><subject>Emotion recognition</subject><subject>hierarchical Dirichlet process mixture model</subject><subject>Linear discriminant analysis</subject><subject>music annotation and retrieval</subject><subject>music emotion recognition</subject><subject>Semantics</subject><subject>Testing</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiQT5A7pp4nqwzyldEuShgWgMrptO546UDBTbmUT_vYMQ493cszjn3pMPoVtKhpQS_bAez2aTISNUDpmgklF2gXpUC51xIuTlP32NBiltSTec85ypHnpeeIg2uo13tsaPPnq3qaHBrzE4SAmv_FfTRsCrUEKNqxDxqk3e4ekuND7s8Ru48LH3R32DripbJxicdx-9z6brySJbvsyfJuNl5nhOmww0gBWaFoTkvOCl4l1xKpUoKilGAgogJaEaKltpBlxZWQnryhykIgXVmvfR_enuIYbPFlJjtqGN--6loUpqSYjUeediJ5eLIaUIlTlEv7Px21BijtjMLzZzxGbO2LrQ3SnkAeAvoEguVD7iP9omaGU</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Wang, Jia-Ching</creator><creator>Lee, Yuan-Shan</creator><creator>Chin, Yu-Hao</creator><creator>Chen, Ying-Ren</creator><creator>Hsieh, Wen-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><author>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Context</topic><topic>Data models</topic><topic>Discriminant analysis</topic><topic>Discriminant method</topic><topic>Emotion recognition</topic><topic>hierarchical Dirichlet process mixture model</topic><topic>Linear discriminant analysis</topic><topic>music annotation and retrieval</topic><topic>music emotion recognition</topic><topic>Semantics</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jia-Ching</creatorcontrib><creatorcontrib>Lee, Yuan-Shan</creatorcontrib><creatorcontrib>Chin, Yu-Hao</creatorcontrib><creatorcontrib>Chen, Ying-Ren</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jia-Ching</au><au>Lee, Yuan-Shan</au><au>Chin, Yu-Hao</au><au>Chen, Ying-Ren</au><au>Hsieh, Wen-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>6</volume><issue>3</issue><spage>261</spage><epage>271</epage><pages>261-271</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2015.2415212</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2015-07, Vol.6 (3), p.261-271
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_7064768
source IEEE Electronic Library (IEL)
subjects Computational modeling
Context
Data models
Discriminant analysis
Discriminant method
Emotion recognition
hierarchical Dirichlet process mixture model
Linear discriminant analysis
music annotation and retrieval
music emotion recognition
Semantics
Testing
title Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Dirichlet%20Process%20Mixture%20Model%20for%20Music%20Emotion%20Recognition&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Wang,%20Jia-Ching&rft.date=2015-07-01&rft.volume=6&rft.issue=3&rft.spage=261&rft.epage=271&rft.pages=261-271&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2015.2415212&rft_dat=%3Cproquest_RIE%3E3931979501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759500596&rft_id=info:pmid/&rft_ieee_id=7064768&rfr_iscdi=true