Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition
This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2015-07, Vol.6 (3), p.261-271 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 3 |
container_start_page | 261 |
container_title | IEEE transactions on affective computing |
container_volume | 6 |
creator | Wang, Jia-Ching Lee, Yuan-Shan Chin, Yu-Hao Chen, Ying-Ren Hsieh, Wen-Chi |
description | This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision. |
doi_str_mv | 10.1109/TAFFC.2015.2415212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7064768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7064768</ieee_id><sourcerecordid>3931979501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiQT5A7pp4nqwzyldEuShgWgMrptO546UDBTbmUT_vYMQ493cszjn3pMPoVtKhpQS_bAez2aTISNUDpmgklF2gXpUC51xIuTlP32NBiltSTec85ypHnpeeIg2uo13tsaPPnq3qaHBrzE4SAmv_FfTRsCrUEKNqxDxqk3e4ekuND7s8Ru48LH3R32DripbJxicdx-9z6brySJbvsyfJuNl5nhOmww0gBWaFoTkvOCl4l1xKpUoKilGAgogJaEaKltpBlxZWQnryhykIgXVmvfR_enuIYbPFlJjtqGN--6loUpqSYjUeediJ5eLIaUIlTlEv7Px21BijtjMLzZzxGbO2LrQ3SnkAeAvoEguVD7iP9omaGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759500596</pqid></control><display><type>article</type><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</creator><creatorcontrib>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</creatorcontrib><description>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2015.2415212</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Context ; Data models ; Discriminant analysis ; Discriminant method ; Emotion recognition ; hierarchical Dirichlet process mixture model ; Linear discriminant analysis ; music annotation and retrieval ; music emotion recognition ; Semantics ; Testing</subject><ispartof>IEEE transactions on affective computing, 2015-07, Vol.6 (3), p.261-271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</citedby><cites>FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7064768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7064768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jia-Ching</creatorcontrib><creatorcontrib>Lee, Yuan-Shan</creatorcontrib><creatorcontrib>Chin, Yu-Hao</creatorcontrib><creatorcontrib>Chen, Ying-Ren</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</description><subject>Computational modeling</subject><subject>Context</subject><subject>Data models</subject><subject>Discriminant analysis</subject><subject>Discriminant method</subject><subject>Emotion recognition</subject><subject>hierarchical Dirichlet process mixture model</subject><subject>Linear discriminant analysis</subject><subject>music annotation and retrieval</subject><subject>music emotion recognition</subject><subject>Semantics</subject><subject>Testing</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiQT5A7pp4nqwzyldEuShgWgMrptO546UDBTbmUT_vYMQ493cszjn3pMPoVtKhpQS_bAez2aTISNUDpmgklF2gXpUC51xIuTlP32NBiltSTec85ypHnpeeIg2uo13tsaPPnq3qaHBrzE4SAmv_FfTRsCrUEKNqxDxqk3e4ekuND7s8Ru48LH3R32DripbJxicdx-9z6brySJbvsyfJuNl5nhOmww0gBWaFoTkvOCl4l1xKpUoKilGAgogJaEaKltpBlxZWQnryhykIgXVmvfR_enuIYbPFlJjtqGN--6loUpqSYjUeediJ5eLIaUIlTlEv7Px21BijtjMLzZzxGbO2LrQ3SnkAeAvoEguVD7iP9omaGU</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Wang, Jia-Ching</creator><creator>Lee, Yuan-Shan</creator><creator>Chin, Yu-Hao</creator><creator>Chen, Ying-Ren</creator><creator>Hsieh, Wen-Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</title><author>Wang, Jia-Ching ; Lee, Yuan-Shan ; Chin, Yu-Hao ; Chen, Ying-Ren ; Hsieh, Wen-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e9eea491b0063b3d730151574bf5484ebe0d019efaf92e37a5f4acd6e570b1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computational modeling</topic><topic>Context</topic><topic>Data models</topic><topic>Discriminant analysis</topic><topic>Discriminant method</topic><topic>Emotion recognition</topic><topic>hierarchical Dirichlet process mixture model</topic><topic>Linear discriminant analysis</topic><topic>music annotation and retrieval</topic><topic>music emotion recognition</topic><topic>Semantics</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jia-Ching</creatorcontrib><creatorcontrib>Lee, Yuan-Shan</creatorcontrib><creatorcontrib>Chin, Yu-Hao</creatorcontrib><creatorcontrib>Chen, Ying-Ren</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jia-Ching</au><au>Lee, Yuan-Shan</au><au>Chin, Yu-Hao</au><au>Chen, Ying-Ren</au><au>Hsieh, Wen-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>6</volume><issue>3</issue><spage>261</spage><epage>271</epage><pages>261-271</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>This study proposes a novel multi-label music emotion recognition (MER) system. An emotion cannot be defined clearly in the real world because the classes of emotions are usually considered overlapping. Accordingly, this study proposes an MER system that is based on hierarchical Dirichlet process mixture model (HPDMM), whose components can be shared between models of each emotion. Moreover, the HDPMM is improved by adding a discriminant factor to the proposed system based on the concept of linear discriminant analysis. The proposed system represents an emotion using weighting coefficients that are related to a global set of components. Moreover, three methods are proposed to compute the weighting coefficients of testing data, and the weighting coefficients are used to determine whether or not the testing data contain certain emotional content. In the tasks of music emotion annotation and retrieval, experimental results show that the proposed MER system outperforms state-of-the-art systems in terms of F-score and mean average precision.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2015.2415212</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2015-07, Vol.6 (3), p.261-271 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_ieee_primary_7064768 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Context Data models Discriminant analysis Discriminant method Emotion recognition hierarchical Dirichlet process mixture model Linear discriminant analysis music annotation and retrieval music emotion recognition Semantics Testing |
title | Hierarchical Dirichlet Process Mixture Model for Music Emotion Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Dirichlet%20Process%20Mixture%20Model%20for%20Music%20Emotion%20Recognition&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Wang,%20Jia-Ching&rft.date=2015-07-01&rft.volume=6&rft.issue=3&rft.spage=261&rft.epage=271&rft.pages=261-271&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2015.2415212&rft_dat=%3Cproquest_RIE%3E3931979501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759500596&rft_id=info:pmid/&rft_ieee_id=7064768&rfr_iscdi=true |