Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments

The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable onli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2016-01, Vol.41 (1), p.5-17, Article 5
Hauptverfasser: You Hong Eng, Kwong Meng Teo, Chitre, Mandar, Kien Ming Ng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 5
container_title IEEE journal of oceanic engineering
container_volume 41
creator You Hong Eng
Kwong Meng Teo
Chitre, Mandar
Kien Ming Ng
description The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.
doi_str_mv 10.1109/JOE.2015.2403576
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7054571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7054571</ieee_id><sourcerecordid>1786203059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</originalsourceid><addsrcrecordid>eNqNkbFvGyEUh09VK9VNulfqgtSlyzm844BjjCKndRXJQ5pInU4YHirWGVzASvLfB9dRBk-ZWL7v8X7v1zRfgM4BqLr4tVrMOwp83vWUcSneNTPgfGhBKHjfzCgTfasoVx-bTzlvKIW-l2rW_FmFyQckt0-54JYsLYbinTe6-BhIdEQHcrkvMcRt3GdyFyymB10wkXv8682E5N5rsgzttcfJksXjDpPf1iH5vPng9JTx88t71txdL35f_WxvVj-WV5c3reklLa1BapgQoLSWDutODpjtnXBDtxbSGiW6tYUDZWFAsXZouLIKGdhhTSlnZ83349xdiv_2mMu49dngNOmAdeUR5CA6ymr0N6CCK1nBA_rtBN3EfQo1SKW4kNB3wCpFj5RJMeeEbtzV9Do9jUDHQy1jrWU81DK-1FIVcaIYX_5fuyTtp1dxE_FU_HoUPSK-_iMp77kE9gwkZZpF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756714213</pqid></control><display><type>article</type><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</creator><creatorcontrib>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</creatorcontrib><description>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</description><identifier>ISSN: 0364-9059</identifier><identifier>ISSN: 1558-1691</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2015.2403576</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Autonomous underwater vehicles ; Autonomous underwater vehicles (AUV) ; Controllers ; Dynamic characteristics ; Estimates ; Estimators ; Maneuvers ; Marine ; Mathematical model ; Mathematical models ; Modeling ; Payloads ; system identification ; Training ; Underwater vehicles ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE journal of oceanic engineering, 2016-01, Vol.41 (1), p.5-17, Article 5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</citedby><cites>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</cites><orcidid>0000-0002-0620-2426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7054571$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>Kwong Meng Teo</creatorcontrib><creatorcontrib>Chitre, Mandar</creatorcontrib><creatorcontrib>Kien Ming Ng</creatorcontrib><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</description><subject>Aerodynamics</subject><subject>Autonomous underwater vehicles</subject><subject>Autonomous underwater vehicles (AUV)</subject><subject>Controllers</subject><subject>Dynamic characteristics</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Maneuvers</subject><subject>Marine</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Payloads</subject><subject>system identification</subject><subject>Training</subject><subject>Underwater vehicles</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>0364-9059</issn><issn>1558-1691</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqNkbFvGyEUh09VK9VNulfqgtSlyzm844BjjCKndRXJQ5pInU4YHirWGVzASvLfB9dRBk-ZWL7v8X7v1zRfgM4BqLr4tVrMOwp83vWUcSneNTPgfGhBKHjfzCgTfasoVx-bTzlvKIW-l2rW_FmFyQckt0-54JYsLYbinTe6-BhIdEQHcrkvMcRt3GdyFyymB10wkXv8682E5N5rsgzttcfJksXjDpPf1iH5vPng9JTx88t71txdL35f_WxvVj-WV5c3reklLa1BapgQoLSWDutODpjtnXBDtxbSGiW6tYUDZWFAsXZouLIKGdhhTSlnZ83349xdiv_2mMu49dngNOmAdeUR5CA6ymr0N6CCK1nBA_rtBN3EfQo1SKW4kNB3wCpFj5RJMeeEbtzV9Do9jUDHQy1jrWU81DK-1FIVcaIYX_5fuyTtp1dxE_FU_HoUPSK-_iMp77kE9gwkZZpF</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>You Hong Eng</creator><creator>Kwong Meng Teo</creator><creator>Chitre, Mandar</creator><creator>Kien Ming Ng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0002-0620-2426</orcidid></search><sort><creationdate>201601</creationdate><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><author>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Autonomous underwater vehicles</topic><topic>Autonomous underwater vehicles (AUV)</topic><topic>Controllers</topic><topic>Dynamic characteristics</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Maneuvers</topic><topic>Marine</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Payloads</topic><topic>system identification</topic><topic>Training</topic><topic>Underwater vehicles</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>Kwong Meng Teo</creatorcontrib><creatorcontrib>Chitre, Mandar</creatorcontrib><creatorcontrib>Kien Ming Ng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You Hong Eng</au><au>Kwong Meng Teo</au><au>Chitre, Mandar</au><au>Kien Ming Ng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2016-01</date><risdate>2016</risdate><volume>41</volume><issue>1</issue><spage>5</spage><epage>17</epage><pages>5-17</pages><artnum>5</artnum><issn>0364-9059</issn><issn>1558-1691</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2015.2403576</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0620-2426</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2016-01, Vol.41 (1), p.5-17, Article 5
issn 0364-9059
1558-1691
1558-1691
language eng
recordid cdi_ieee_primary_7054571
source IEEE Electronic Library (IEL)
subjects Aerodynamics
Autonomous underwater vehicles
Autonomous underwater vehicles (AUV)
Controllers
Dynamic characteristics
Estimates
Estimators
Maneuvers
Marine
Mathematical model
Mathematical models
Modeling
Payloads
system identification
Training
Underwater vehicles
Vehicle dynamics
Vehicles
title Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20System%20Identification%20of%20an%20Autonomous%20Underwater%20Vehicle%20Via%20In-Field%20Experiments&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=You%20Hong%20Eng&rft.date=2016-01&rft.volume=41&rft.issue=1&rft.spage=5&rft.epage=17&rft.pages=5-17&rft.artnum=5&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2015.2403576&rft_dat=%3Cproquest_ieee_%3E1786203059%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756714213&rft_id=info:pmid/&rft_ieee_id=7054571&rfr_iscdi=true