Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments
The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable onli...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2016-01, Vol.41 (1), p.5-17, Article 5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | IEEE journal of oceanic engineering |
container_volume | 41 |
creator | You Hong Eng Kwong Meng Teo Chitre, Mandar Kien Ming Ng |
description | The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller. |
doi_str_mv | 10.1109/JOE.2015.2403576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7054571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7054571</ieee_id><sourcerecordid>1786203059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</originalsourceid><addsrcrecordid>eNqNkbFvGyEUh09VK9VNulfqgtSlyzm844BjjCKndRXJQ5pInU4YHirWGVzASvLfB9dRBk-ZWL7v8X7v1zRfgM4BqLr4tVrMOwp83vWUcSneNTPgfGhBKHjfzCgTfasoVx-bTzlvKIW-l2rW_FmFyQckt0-54JYsLYbinTe6-BhIdEQHcrkvMcRt3GdyFyymB10wkXv8682E5N5rsgzttcfJksXjDpPf1iH5vPng9JTx88t71txdL35f_WxvVj-WV5c3reklLa1BapgQoLSWDutODpjtnXBDtxbSGiW6tYUDZWFAsXZouLIKGdhhTSlnZ83349xdiv_2mMu49dngNOmAdeUR5CA6ymr0N6CCK1nBA_rtBN3EfQo1SKW4kNB3wCpFj5RJMeeEbtzV9Do9jUDHQy1jrWU81DK-1FIVcaIYX_5fuyTtp1dxE_FU_HoUPSK-_iMp77kE9gwkZZpF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756714213</pqid></control><display><type>article</type><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</creator><creatorcontrib>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</creatorcontrib><description>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</description><identifier>ISSN: 0364-9059</identifier><identifier>ISSN: 1558-1691</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2015.2403576</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Autonomous underwater vehicles ; Autonomous underwater vehicles (AUV) ; Controllers ; Dynamic characteristics ; Estimates ; Estimators ; Maneuvers ; Marine ; Mathematical model ; Mathematical models ; Modeling ; Payloads ; system identification ; Training ; Underwater vehicles ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE journal of oceanic engineering, 2016-01, Vol.41 (1), p.5-17, Article 5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</citedby><cites>FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</cites><orcidid>0000-0002-0620-2426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7054571$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>Kwong Meng Teo</creatorcontrib><creatorcontrib>Chitre, Mandar</creatorcontrib><creatorcontrib>Kien Ming Ng</creatorcontrib><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</description><subject>Aerodynamics</subject><subject>Autonomous underwater vehicles</subject><subject>Autonomous underwater vehicles (AUV)</subject><subject>Controllers</subject><subject>Dynamic characteristics</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Maneuvers</subject><subject>Marine</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Payloads</subject><subject>system identification</subject><subject>Training</subject><subject>Underwater vehicles</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>0364-9059</issn><issn>1558-1691</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqNkbFvGyEUh09VK9VNulfqgtSlyzm844BjjCKndRXJQ5pInU4YHirWGVzASvLfB9dRBk-ZWL7v8X7v1zRfgM4BqLr4tVrMOwp83vWUcSneNTPgfGhBKHjfzCgTfasoVx-bTzlvKIW-l2rW_FmFyQckt0-54JYsLYbinTe6-BhIdEQHcrkvMcRt3GdyFyymB10wkXv8682E5N5rsgzttcfJksXjDpPf1iH5vPng9JTx88t71txdL35f_WxvVj-WV5c3reklLa1BapgQoLSWDutODpjtnXBDtxbSGiW6tYUDZWFAsXZouLIKGdhhTSlnZ83349xdiv_2mMu49dngNOmAdeUR5CA6ymr0N6CCK1nBA_rtBN3EfQo1SKW4kNB3wCpFj5RJMeeEbtzV9Do9jUDHQy1jrWU81DK-1FIVcaIYX_5fuyTtp1dxE_FU_HoUPSK-_iMp77kE9gwkZZpF</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>You Hong Eng</creator><creator>Kwong Meng Teo</creator><creator>Chitre, Mandar</creator><creator>Kien Ming Ng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0002-0620-2426</orcidid></search><sort><creationdate>201601</creationdate><title>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</title><author>You Hong Eng ; Kwong Meng Teo ; Chitre, Mandar ; Kien Ming Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ce0c36619aa7fe479f13d4f6f82b67dc962bd1ce0cd18e6bfec59d9e31d8b0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Autonomous underwater vehicles</topic><topic>Autonomous underwater vehicles (AUV)</topic><topic>Controllers</topic><topic>Dynamic characteristics</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Maneuvers</topic><topic>Marine</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Payloads</topic><topic>system identification</topic><topic>Training</topic><topic>Underwater vehicles</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You Hong Eng</creatorcontrib><creatorcontrib>Kwong Meng Teo</creatorcontrib><creatorcontrib>Chitre, Mandar</creatorcontrib><creatorcontrib>Kien Ming Ng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You Hong Eng</au><au>Kwong Meng Teo</au><au>Chitre, Mandar</au><au>Kien Ming Ng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2016-01</date><risdate>2016</risdate><volume>41</volume><issue>1</issue><spage>5</spage><epage>17</epage><pages>5-17</pages><artnum>5</artnum><issn>0364-9059</issn><issn>1558-1691</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>The dynamic characteristic of an autonomous underwater vehicle (AUV) is affected when it is reconfigured with different payloads. It is desirable to have an updated model, such that the control and guidance law can be redesigned to obtain better performance. Hence, we develop a method to enable online identification of AUV dynamics via in-field experiments, where the AUV is commanded to execute a compact set of maneuvers under doublet excitation. The identification process has two stages. In the training stage, state variable filter and recursive least square (SVF-RLS) estimator is used to estimate the unknown parameters. In the validation stage, the prediction capability of the model is checked using a fresh data set. The parameters converged within 12 s in the experiments using five different thrusts. Validation results show that the identified models are able to explain 78% to 92% of the output variation. Next, we compare the SVF-RLS estimator with the conventional offline identification method. The comparison shows that the SVF-RLS estimator is better in terms of prediction accuracy, computational cost and training time. The usefulness of the identified models is highlighted in two applications. We use it to estimate the turning radius of the AUV at different speeds, and to design a gain-scheduled controller.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2015.2403576</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0620-2426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2016-01, Vol.41 (1), p.5-17, Article 5 |
issn | 0364-9059 1558-1691 1558-1691 |
language | eng |
recordid | cdi_ieee_primary_7054571 |
source | IEEE Electronic Library (IEL) |
subjects | Aerodynamics Autonomous underwater vehicles Autonomous underwater vehicles (AUV) Controllers Dynamic characteristics Estimates Estimators Maneuvers Marine Mathematical model Mathematical models Modeling Payloads system identification Training Underwater vehicles Vehicle dynamics Vehicles |
title | Online System Identification of an Autonomous Underwater Vehicle Via In-Field Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20System%20Identification%20of%20an%20Autonomous%20Underwater%20Vehicle%20Via%20In-Field%20Experiments&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=You%20Hong%20Eng&rft.date=2016-01&rft.volume=41&rft.issue=1&rft.spage=5&rft.epage=17&rft.pages=5-17&rft.artnum=5&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2015.2403576&rft_dat=%3Cproquest_ieee_%3E1786203059%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756714213&rft_id=info:pmid/&rft_ieee_id=7054571&rfr_iscdi=true |