Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations

While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2015-03, Vol.5 (2), p.299-313
Hauptverfasser: Suen, Jonathan Y., Fang, Michael T., Denny, Sean P., Lubin, Philip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 2
container_start_page 299
container_title IEEE transactions on terahertz science and technology
container_volume 5
creator Suen, Jonathan Y.
Fang, Michael T.
Denny, Sean P.
Lubin, Philip M.
description While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric attenuation. We modeled a ground to geostationary satellite link and found that using large aperture THz stations, patterned after the 12.5 m Atacama Large Microwave Array dish and the 3.5 m Herschel Space Observatory optics, worst 10th percentile data rates in excess of one terabit per second in the THz bands are possible. The key is to site ground stations in dry regions. We locate these by coupling our link model, which selects optimum modulation and carrier bandwidth, with global, high-resolution satellite water vapor measurements. We present detailed maps showing modeled link performance over the surface of the Earth. Smaller apertures on aircraft and balloons are also able to exceed 1 terabit/second due to their location above nearly all water vapor. Compared to free-space optical links, evidence suggests THz systems are superior where fog, cloud cover and clear-air turbulence are of concern.
doi_str_mv 10.1109/TTHZ.2015.2399694
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7047849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7047849</ieee_id><sourcerecordid>10_1109_TTHZ_2015_2399694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c76477a98220617f3302e4d5dee3852ab5f569d98d34435fce0852153110774b3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EElXpARAbXyDF_46XqNAWKYgFQSA2kZNMwODWKPamnJ6krTqbGY3eG837ELqmZE4pMbdluf6YM0LlnHFjlBFnaMKoVBkXQp2fZvZ-iWYxfpOhpOK5FhP09hRa8G77iUOHS-ht7RJeQYjJJhe2tt_tt1_Qpz_8YhN47xLgwm1_Il72YYNXPtTW-x2-H7RFaPa-eIUuOusjzI59il6XD-VinRXPq8fFXZE1QoiUNVoJra3JGSOK6o5zwkC0sgXguWS2lp1UpjV5O0ThsmuADGsq-ZBba1HzKaKHu00fYuyhq357txneriipRjjVCKca4VRHOIPn5uBxAHDSayJ0Lgz_B-FJYC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations</title><source>IEEE Electronic Library (IEL)</source><creator>Suen, Jonathan Y. ; Fang, Michael T. ; Denny, Sean P. ; Lubin, Philip M.</creator><creatorcontrib>Suen, Jonathan Y. ; Fang, Michael T. ; Denny, Sean P. ; Lubin, Philip M.</creatorcontrib><description>While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric attenuation. We modeled a ground to geostationary satellite link and found that using large aperture THz stations, patterned after the 12.5 m Atacama Large Microwave Array dish and the 3.5 m Herschel Space Observatory optics, worst 10th percentile data rates in excess of one terabit per second in the THz bands are possible. The key is to site ground stations in dry regions. We locate these by coupling our link model, which selects optimum modulation and carrier bandwidth, with global, high-resolution satellite water vapor measurements. We present detailed maps showing modeled link performance over the surface of the Earth. Smaller apertures on aircraft and balloons are also able to exceed 1 terabit/second due to their location above nearly all water vapor. Compared to free-space optical links, evidence suggests THz systems are superior where fog, cloud cover and clear-air turbulence are of concern.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2015.2399694</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Atmospheric modeling ; Attenuation ; Bandwidth ; Noise ; Satellite broadcasting ; Satellite communication ; satellite ground stations ; Satellites ; submillimeter wave communication ; submillimeter wave propagation</subject><ispartof>IEEE transactions on terahertz science and technology, 2015-03, Vol.5 (2), p.299-313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c76477a98220617f3302e4d5dee3852ab5f569d98d34435fce0852153110774b3</citedby><cites>FETCH-LOGICAL-c444t-c76477a98220617f3302e4d5dee3852ab5f569d98d34435fce0852153110774b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7047849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7047849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suen, Jonathan Y.</creatorcontrib><creatorcontrib>Fang, Michael T.</creatorcontrib><creatorcontrib>Denny, Sean P.</creatorcontrib><creatorcontrib>Lubin, Philip M.</creatorcontrib><title>Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric attenuation. We modeled a ground to geostationary satellite link and found that using large aperture THz stations, patterned after the 12.5 m Atacama Large Microwave Array dish and the 3.5 m Herschel Space Observatory optics, worst 10th percentile data rates in excess of one terabit per second in the THz bands are possible. The key is to site ground stations in dry regions. We locate these by coupling our link model, which selects optimum modulation and carrier bandwidth, with global, high-resolution satellite water vapor measurements. We present detailed maps showing modeled link performance over the surface of the Earth. Smaller apertures on aircraft and balloons are also able to exceed 1 terabit/second due to their location above nearly all water vapor. Compared to free-space optical links, evidence suggests THz systems are superior where fog, cloud cover and clear-air turbulence are of concern.</description><subject>Apertures</subject><subject>Atmospheric modeling</subject><subject>Attenuation</subject><subject>Bandwidth</subject><subject>Noise</subject><subject>Satellite broadcasting</subject><subject>Satellite communication</subject><subject>satellite ground stations</subject><subject>Satellites</subject><subject>submillimeter wave communication</subject><subject>submillimeter wave propagation</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQhS0EElXpARAbXyDF_46XqNAWKYgFQSA2kZNMwODWKPamnJ6krTqbGY3eG837ELqmZE4pMbdluf6YM0LlnHFjlBFnaMKoVBkXQp2fZvZ-iWYxfpOhpOK5FhP09hRa8G77iUOHS-ht7RJeQYjJJhe2tt_tt1_Qpz_8YhN47xLgwm1_Il72YYNXPtTW-x2-H7RFaPa-eIUuOusjzI59il6XD-VinRXPq8fFXZE1QoiUNVoJra3JGSOK6o5zwkC0sgXguWS2lp1UpjV5O0ThsmuADGsq-ZBba1HzKaKHu00fYuyhq357txneriipRjjVCKca4VRHOIPn5uBxAHDSayJ0Lgz_B-FJYC4</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Suen, Jonathan Y.</creator><creator>Fang, Michael T.</creator><creator>Denny, Sean P.</creator><creator>Lubin, Philip M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201503</creationdate><title>Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations</title><author>Suen, Jonathan Y. ; Fang, Michael T. ; Denny, Sean P. ; Lubin, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c76477a98220617f3302e4d5dee3852ab5f569d98d34435fce0852153110774b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Apertures</topic><topic>Atmospheric modeling</topic><topic>Attenuation</topic><topic>Bandwidth</topic><topic>Noise</topic><topic>Satellite broadcasting</topic><topic>Satellite communication</topic><topic>satellite ground stations</topic><topic>Satellites</topic><topic>submillimeter wave communication</topic><topic>submillimeter wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suen, Jonathan Y.</creatorcontrib><creatorcontrib>Fang, Michael T.</creatorcontrib><creatorcontrib>Denny, Sean P.</creatorcontrib><creatorcontrib>Lubin, Philip M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suen, Jonathan Y.</au><au>Fang, Michael T.</au><au>Denny, Sean P.</au><au>Lubin, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2015-03</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>299</spage><epage>313</epage><pages>299-313</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>While terahertz (THz) communication systems, operating from 100 GHz to 1 THz, have the potential to exploit wide swaths of unused spectrum for ultra-high bitrate communication, there are significant challenges. Particularly, the strong absorption of water vapor can result in very high atmospheric attenuation. We modeled a ground to geostationary satellite link and found that using large aperture THz stations, patterned after the 12.5 m Atacama Large Microwave Array dish and the 3.5 m Herschel Space Observatory optics, worst 10th percentile data rates in excess of one terabit per second in the THz bands are possible. The key is to site ground stations in dry regions. We locate these by coupling our link model, which selects optimum modulation and carrier bandwidth, with global, high-resolution satellite water vapor measurements. We present detailed maps showing modeled link performance over the surface of the Earth. Smaller apertures on aircraft and balloons are also able to exceed 1 terabit/second due to their location above nearly all water vapor. Compared to free-space optical links, evidence suggests THz systems are superior where fog, cloud cover and clear-air turbulence are of concern.</abstract><pub>IEEE</pub><doi>10.1109/TTHZ.2015.2399694</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-342X
ispartof IEEE transactions on terahertz science and technology, 2015-03, Vol.5 (2), p.299-313
issn 2156-342X
2156-3446
language eng
recordid cdi_ieee_primary_7047849
source IEEE Electronic Library (IEL)
subjects Apertures
Atmospheric modeling
Attenuation
Bandwidth
Noise
Satellite broadcasting
Satellite communication
satellite ground stations
Satellites
submillimeter wave communication
submillimeter wave propagation
title Modeling of Terabit Geostationary Terahertz Satellite Links From Globally Dry Locations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Terabit%20Geostationary%20Terahertz%20Satellite%20Links%20From%20Globally%20Dry%20Locations&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Suen,%20Jonathan%20Y.&rft.date=2015-03&rft.volume=5&rft.issue=2&rft.spage=299&rft.epage=313&rft.pages=299-313&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2015.2399694&rft_dat=%3Ccrossref_RIE%3E10_1109_TTHZ_2015_2399694%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7047849&rfr_iscdi=true