The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree

Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-04, Vol.61 (4), p.1640-1648
Hauptverfasser: Dang, Hui, Yang, Weiguo, Shi, Zhiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1648
container_issue 4
container_start_page 1640
container_title IEEE transactions on information theory
container_volume 61
creator Dang, Hui
Yang, Weiguo
Shi, Zhiyan
description Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.
doi_str_mv 10.1109/TIT.2015.2404310
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7042766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7042766</ieee_id><sourcerecordid>3636332161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVwR-JiiXPKOnHs5AhVgUqlHAjnyEnWbQqxi50A_QD-G1dFnEYrvZndHUIuGUwYg_ymmBeTGFg6iTnwhMERGbE0lVEuUn5MRgAsi3LOs1Ny5v0mjDxl8Yj8FGukL72zZkUX6otaHcStkC6HrkLnqTIN7QMzMwHa7ujMrWzT1jT4rMOOauvo0pq17ewKDdrB07tWD65WfRsyn5R7s590ulat8XRuGvzGhlY7qgJmlNvRwiGekxOt3j1e_OmYvN7PiuljtHh-mE9vF1Ed56yPdK0anSOXilcVB8iYSgXINE54JXkTK5bkMnydYK4rIUBhg1le6QRAZBJlMibXh9ytsx8D-r7c2MGZsLJkQogskcAhUHCgame9d6jLrWu7cGvJoNyXXYayy33Z5V_ZwXJ1sLSI-I-HtFgKkfwCro57Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666837040</pqid></control><display><type>article</type><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><source>IEEE Electronic Library (IEL)</source><creator>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</creator><creatorcontrib>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</creatorcontrib><description>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2404310</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; binary tree ; Binary trees ; Convergence ; Educational institutions ; Entropy ; entropy ergodic theorem ; Markov analysis ; Markov processes ; nonhomogeneous bifurcating Markov chains ; Numbers ; Random variables ; strong law of large numbers ; Theorems</subject><ispartof>IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1640-1648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</citedby><cites>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7042766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7042766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dang, Hui</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Shi, Zhiyan</creatorcontrib><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</description><subject>Aging</subject><subject>binary tree</subject><subject>Binary trees</subject><subject>Convergence</subject><subject>Educational institutions</subject><subject>Entropy</subject><subject>entropy ergodic theorem</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>nonhomogeneous bifurcating Markov chains</subject><subject>Numbers</subject><subject>Random variables</subject><subject>strong law of large numbers</subject><subject>Theorems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqVwR-JiiXPKOnHs5AhVgUqlHAjnyEnWbQqxi50A_QD-G1dFnEYrvZndHUIuGUwYg_ymmBeTGFg6iTnwhMERGbE0lVEuUn5MRgAsi3LOs1Ny5v0mjDxl8Yj8FGukL72zZkUX6otaHcStkC6HrkLnqTIN7QMzMwHa7ujMrWzT1jT4rMOOauvo0pq17ewKDdrB07tWD65WfRsyn5R7s590ulat8XRuGvzGhlY7qgJmlNvRwiGekxOt3j1e_OmYvN7PiuljtHh-mE9vF1Ed56yPdK0anSOXilcVB8iYSgXINE54JXkTK5bkMnydYK4rIUBhg1le6QRAZBJlMibXh9ytsx8D-r7c2MGZsLJkQogskcAhUHCgame9d6jLrWu7cGvJoNyXXYayy33Z5V_ZwXJ1sLSI-I-HtFgKkfwCro57Dw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Dang, Hui</creator><creator>Yang, Weiguo</creator><creator>Shi, Zhiyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><author>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>binary tree</topic><topic>Binary trees</topic><topic>Convergence</topic><topic>Educational institutions</topic><topic>Entropy</topic><topic>entropy ergodic theorem</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>nonhomogeneous bifurcating Markov chains</topic><topic>Numbers</topic><topic>Random variables</topic><topic>strong law of large numbers</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Hui</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Shi, Zhiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dang, Hui</au><au>Yang, Weiguo</au><au>Shi, Zhiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-04</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>1640</spage><epage>1648</epage><pages>1640-1648</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2404310</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1640-1648
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7042766
source IEEE Electronic Library (IEL)
subjects Aging
binary tree
Binary trees
Convergence
Educational institutions
Entropy
entropy ergodic theorem
Markov analysis
Markov processes
nonhomogeneous bifurcating Markov chains
Numbers
Random variables
strong law of large numbers
Theorems
title The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Strong%20Law%20of%20Large%20Numbers%20and%20the%20Entropy%20Ergodic%20Theorem%20for%20Nonhomogeneous%20Bifurcating%20Markov%20Chains%20Indexed%20by%20a%20Binary%20Tree&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Dang,%20Hui&rft.date=2015-04&rft.volume=61&rft.issue=4&rft.spage=1640&rft.epage=1648&rft.pages=1640-1648&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2404310&rft_dat=%3Cproquest_RIE%3E3636332161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666837040&rft_id=info:pmid/&rft_ieee_id=7042766&rfr_iscdi=true