The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree
Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-04, Vol.61 (4), p.1640-1648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 4 |
container_start_page | 1640 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Dang, Hui Yang, Weiguo Shi, Zhiyan |
description | Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper. |
doi_str_mv | 10.1109/TIT.2015.2404310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7042766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7042766</ieee_id><sourcerecordid>3636332161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVwR-JiiXPKOnHs5AhVgUqlHAjnyEnWbQqxi50A_QD-G1dFnEYrvZndHUIuGUwYg_ymmBeTGFg6iTnwhMERGbE0lVEuUn5MRgAsi3LOs1Ny5v0mjDxl8Yj8FGukL72zZkUX6otaHcStkC6HrkLnqTIN7QMzMwHa7ujMrWzT1jT4rMOOauvo0pq17ewKDdrB07tWD65WfRsyn5R7s590ulat8XRuGvzGhlY7qgJmlNvRwiGekxOt3j1e_OmYvN7PiuljtHh-mE9vF1Ed56yPdK0anSOXilcVB8iYSgXINE54JXkTK5bkMnydYK4rIUBhg1le6QRAZBJlMibXh9ytsx8D-r7c2MGZsLJkQogskcAhUHCgame9d6jLrWu7cGvJoNyXXYayy33Z5V_ZwXJ1sLSI-I-HtFgKkfwCro57Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666837040</pqid></control><display><type>article</type><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><source>IEEE Electronic Library (IEL)</source><creator>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</creator><creatorcontrib>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</creatorcontrib><description>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2404310</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; binary tree ; Binary trees ; Convergence ; Educational institutions ; Entropy ; entropy ergodic theorem ; Markov analysis ; Markov processes ; nonhomogeneous bifurcating Markov chains ; Numbers ; Random variables ; strong law of large numbers ; Theorems</subject><ispartof>IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1640-1648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</citedby><cites>FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7042766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7042766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dang, Hui</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Shi, Zhiyan</creatorcontrib><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</description><subject>Aging</subject><subject>binary tree</subject><subject>Binary trees</subject><subject>Convergence</subject><subject>Educational institutions</subject><subject>Entropy</subject><subject>entropy ergodic theorem</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>nonhomogeneous bifurcating Markov chains</subject><subject>Numbers</subject><subject>Random variables</subject><subject>strong law of large numbers</subject><subject>Theorems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqVwR-JiiXPKOnHs5AhVgUqlHAjnyEnWbQqxi50A_QD-G1dFnEYrvZndHUIuGUwYg_ymmBeTGFg6iTnwhMERGbE0lVEuUn5MRgAsi3LOs1Ny5v0mjDxl8Yj8FGukL72zZkUX6otaHcStkC6HrkLnqTIN7QMzMwHa7ujMrWzT1jT4rMOOauvo0pq17ewKDdrB07tWD65WfRsyn5R7s590ulat8XRuGvzGhlY7qgJmlNvRwiGekxOt3j1e_OmYvN7PiuljtHh-mE9vF1Ed56yPdK0anSOXilcVB8iYSgXINE54JXkTK5bkMnydYK4rIUBhg1le6QRAZBJlMibXh9ytsx8D-r7c2MGZsLJkQogskcAhUHCgame9d6jLrWu7cGvJoNyXXYayy33Z5V_ZwXJ1sLSI-I-HtFgKkfwCro57Dw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Dang, Hui</creator><creator>Yang, Weiguo</creator><creator>Shi, Zhiyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</title><author>Dang, Hui ; Yang, Weiguo ; Shi, Zhiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fcadf9e47a4bb40081a56075234b74d2a13971553e9fb660aede89bf300687e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aging</topic><topic>binary tree</topic><topic>Binary trees</topic><topic>Convergence</topic><topic>Educational institutions</topic><topic>Entropy</topic><topic>entropy ergodic theorem</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>nonhomogeneous bifurcating Markov chains</topic><topic>Numbers</topic><topic>Random variables</topic><topic>strong law of large numbers</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Hui</creatorcontrib><creatorcontrib>Yang, Weiguo</creatorcontrib><creatorcontrib>Shi, Zhiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dang, Hui</au><au>Yang, Weiguo</au><au>Shi, Zhiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-04</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>1640</spage><epage>1648</epage><pages>1640-1648</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Guyon (Guyon J. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann Appl Probab, 2007, 17: 1538-1569) introduced an important model for homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space and studied their limit theorems. The results were applied to detect cellular aging. In this paper, we define a discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree and discuss the equivalent properties for them. The strong law of large numbers and the entropy ergodic theorem are studied for these Markov chains with finite state space. In contrast to previous work, we use a new approach to prove the main results of this paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2404310</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1640-1648 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_7042766 |
source | IEEE Electronic Library (IEL) |
subjects | Aging binary tree Binary trees Convergence Educational institutions Entropy entropy ergodic theorem Markov analysis Markov processes nonhomogeneous bifurcating Markov chains Numbers Random variables strong law of large numbers Theorems |
title | The Strong Law of Large Numbers and the Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Strong%20Law%20of%20Large%20Numbers%20and%20the%20Entropy%20Ergodic%20Theorem%20for%20Nonhomogeneous%20Bifurcating%20Markov%20Chains%20Indexed%20by%20a%20Binary%20Tree&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Dang,%20Hui&rft.date=2015-04&rft.volume=61&rft.issue=4&rft.spage=1640&rft.epage=1648&rft.pages=1640-1648&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2404310&rft_dat=%3Cproquest_RIE%3E3636332161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666837040&rft_id=info:pmid/&rft_ieee_id=7042766&rfr_iscdi=true |