Latent Space Sparse and Low-Rank Subspace Clustering

We propose three novel algorithms for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe methods that learn the projection of data and find the sparse and/or low-rank coefficients in the low-dimensional latent space. Cluster labels a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2015-06, Vol.9 (4), p.691-701
Hauptverfasser: Patel, Vishal M., Van Nguyen, Hien, Vidal, Rene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 4
container_start_page 691
container_title IEEE journal of selected topics in signal processing
container_volume 9
creator Patel, Vishal M.
Van Nguyen, Hien
Vidal, Rene
description We propose three novel algorithms for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe methods that learn the projection of data and find the sparse and/or low-rank coefficients in the low-dimensional latent space. Cluster labels are then assigned by applying spectral clustering to a similarity matrix built from these representations. Efficient optimization methods are proposed and their non-linear extensions based on kernel methods are presented. Various experiments show that the proposed methods perform better than many competitive subspace clustering methods.
doi_str_mv 10.1109/JSTSP.2015.2402643
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7039205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7039205</ieee_id><sourcerecordid>10_1109_JSTSP_2015_2402643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-8cebc271ed046b76eff18b1c8b61c9af8a94006fbf53abf97d769f4a4cfd16583</originalsourceid><addsrcrecordid>eNo9j11LwzAUhoMoOKd_QG_6BzLPyWdzKcVPCoqd1yFJE6nObjQd4r_XbsOb8x54eV54CLlEWCCCuX5qls3LggHKBRPAlOBHZIZGIAVRiuPp54wKKfkpOcv5A0BqhWJGRO3G2I9Fs3EhTnfIsXB9W9Trb_rq-s-i2fq8K6vVNo9x6Pr3c3KS3CrHi0POydvd7bJ6oPXz_WN1U9PAlB5pGaIPTGNsQSivVUwJS4-h9AqDcal0RgCo5JPkziejW61MEk6E1KKSJZ8Ttt8NwzrnISa7GbovN_xYBDt52523nbztwfsPutpDXYzxH9DADQPJfwE_eVRz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Latent Space Sparse and Low-Rank Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Patel, Vishal M. ; Van Nguyen, Hien ; Vidal, Rene</creator><creatorcontrib>Patel, Vishal M. ; Van Nguyen, Hien ; Vidal, Rene</creatorcontrib><description>We propose three novel algorithms for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe methods that learn the projection of data and find the sparse and/or low-rank coefficients in the low-dimensional latent space. Cluster labels are then assigned by applying spectral clustering to a similarity matrix built from these representations. Efficient optimization methods are proposed and their non-linear extensions based on kernel methods are presented. Various experiments show that the proposed methods perform better than many competitive subspace clustering methods.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2015.2402643</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Clustering methods ; Cost function ; Dimension reduction ; Kernel ; kernel methods ; low-rank subspace clustering ; manifold clustering ; Signal processing algorithms ; Sparse matrices ; sparse subspace clustering ; subspace clustering</subject><ispartof>IEEE journal of selected topics in signal processing, 2015-06, Vol.9 (4), p.691-701</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-8cebc271ed046b76eff18b1c8b61c9af8a94006fbf53abf97d769f4a4cfd16583</citedby><cites>FETCH-LOGICAL-c267t-8cebc271ed046b76eff18b1c8b61c9af8a94006fbf53abf97d769f4a4cfd16583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7039205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7039205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patel, Vishal M.</creatorcontrib><creatorcontrib>Van Nguyen, Hien</creatorcontrib><creatorcontrib>Vidal, Rene</creatorcontrib><title>Latent Space Sparse and Low-Rank Subspace Clustering</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We propose three novel algorithms for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe methods that learn the projection of data and find the sparse and/or low-rank coefficients in the low-dimensional latent space. Cluster labels are then assigned by applying spectral clustering to a similarity matrix built from these representations. Efficient optimization methods are proposed and their non-linear extensions based on kernel methods are presented. Various experiments show that the proposed methods perform better than many competitive subspace clustering methods.</description><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Cost function</subject><subject>Dimension reduction</subject><subject>Kernel</subject><subject>kernel methods</subject><subject>low-rank subspace clustering</subject><subject>manifold clustering</subject><subject>Signal processing algorithms</subject><subject>Sparse matrices</subject><subject>sparse subspace clustering</subject><subject>subspace clustering</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j11LwzAUhoMoOKd_QG_6BzLPyWdzKcVPCoqd1yFJE6nObjQd4r_XbsOb8x54eV54CLlEWCCCuX5qls3LggHKBRPAlOBHZIZGIAVRiuPp54wKKfkpOcv5A0BqhWJGRO3G2I9Fs3EhTnfIsXB9W9Trb_rq-s-i2fq8K6vVNo9x6Pr3c3KS3CrHi0POydvd7bJ6oPXz_WN1U9PAlB5pGaIPTGNsQSivVUwJS4-h9AqDcal0RgCo5JPkziejW61MEk6E1KKSJZ8Ttt8NwzrnISa7GbovN_xYBDt52523nbztwfsPutpDXYzxH9DADQPJfwE_eVRz</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Patel, Vishal M.</creator><creator>Van Nguyen, Hien</creator><creator>Vidal, Rene</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>Latent Space Sparse and Low-Rank Subspace Clustering</title><author>Patel, Vishal M. ; Van Nguyen, Hien ; Vidal, Rene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-8cebc271ed046b76eff18b1c8b61c9af8a94006fbf53abf97d769f4a4cfd16583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Cost function</topic><topic>Dimension reduction</topic><topic>Kernel</topic><topic>kernel methods</topic><topic>low-rank subspace clustering</topic><topic>manifold clustering</topic><topic>Signal processing algorithms</topic><topic>Sparse matrices</topic><topic>sparse subspace clustering</topic><topic>subspace clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Vishal M.</creatorcontrib><creatorcontrib>Van Nguyen, Hien</creatorcontrib><creatorcontrib>Vidal, Rene</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patel, Vishal M.</au><au>Van Nguyen, Hien</au><au>Vidal, Rene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent Space Sparse and Low-Rank Subspace Clustering</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2015-06</date><risdate>2015</risdate><volume>9</volume><issue>4</issue><spage>691</spage><epage>701</epage><pages>691-701</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We propose three novel algorithms for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe methods that learn the projection of data and find the sparse and/or low-rank coefficients in the low-dimensional latent space. Cluster labels are then assigned by applying spectral clustering to a similarity matrix built from these representations. Efficient optimization methods are proposed and their non-linear extensions based on kernel methods are presented. Various experiments show that the proposed methods perform better than many competitive subspace clustering methods.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2015.2402643</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2015-06, Vol.9 (4), p.691-701
issn 1932-4553
1941-0484
language eng
recordid cdi_ieee_primary_7039205
source IEEE Electronic Library (IEL)
subjects Clustering algorithms
Clustering methods
Cost function
Dimension reduction
Kernel
kernel methods
low-rank subspace clustering
manifold clustering
Signal processing algorithms
Sparse matrices
sparse subspace clustering
subspace clustering
title Latent Space Sparse and Low-Rank Subspace Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20Space%20Sparse%20and%20Low-Rank%20Subspace%20Clustering&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Patel,%20Vishal%20M.&rft.date=2015-06&rft.volume=9&rft.issue=4&rft.spage=691&rft.epage=701&rft.pages=691-701&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2015.2402643&rft_dat=%3Ccrossref_RIE%3E10_1109_JSTSP_2015_2402643%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7039205&rfr_iscdi=true