A programmable neural processor for pulse-coded hippocampal signal

Rapid advances in submicron microelectronic technologies have made possible the integration of millions of transistors on a single silicon chip for complex signal processing and control functions. The hippocampal region of the brain system can be analyzed with a nonlinear system modeling approach. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsai, R.H., Sheu, B.J., Berger, T.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40 vol.3
container_issue
container_start_page 37
container_title
container_volume 3
creator Tsai, R.H.
Sheu, B.J.
Berger, T.W.
description Rapid advances in submicron microelectronic technologies have made possible the integration of millions of transistors on a single silicon chip for complex signal processing and control functions. The hippocampal region of the brain system can be analyzed with a nonlinear system modeling approach. The input-output relationship of the neural units is represented by the kernel functions of various complexities. The modeling expressions of the first and second order kernels are computed in analog current-mode instead of digital format in order to fully explore massively parallel processing capability of the neural networks. A programmable pulse-coded neural network based on the hippocampal kernel functions can process the pulse information efficiently. The model-based approach saves silicon area and achieves adequate accuracy level. Circuit-level simulation results and experimental data are also presented.
doi_str_mv 10.1109/ISCAS.1998.703890
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_703890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>703890</ieee_id><sourcerecordid>703890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-29167b421a5213cbadb1dd13011a28e625514c102eec87e96ed1fccc8fcdb3b83</originalsourceid><addsrcrecordid>eNotT8tqwzAQFJRCSuoPSE_-AbtaPWzp6Jo-AoEc0p6DHuvUxY6F1Bz691VJh1mGGYaFIWQDtAag-nF76LtDDVqruqVcaXpDCt0qmsmFkLJZkSKlL5qRHeX6jjx1ZYjLKZp5NnbC8oyXaKa_zGFKSyyHfOEyJazc4tGXn2MIizNzyK00ns5muie3g8mF4l_X5OPl-b1_q3b7123f7aoRqPiumIamtYKBkQy4s8Zb8B44BTBMYcOkBOGAMkSnWtQNehicc2pw3nKr-Jo8XP-OiHgMcZxN_Dleh_JfRxNJvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A programmable neural processor for pulse-coded hippocampal signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsai, R.H. ; Sheu, B.J. ; Berger, T.W.</creator><creatorcontrib>Tsai, R.H. ; Sheu, B.J. ; Berger, T.W.</creatorcontrib><description>Rapid advances in submicron microelectronic technologies have made possible the integration of millions of transistors on a single silicon chip for complex signal processing and control functions. The hippocampal region of the brain system can be analyzed with a nonlinear system modeling approach. The input-output relationship of the neural units is represented by the kernel functions of various complexities. The modeling expressions of the first and second order kernels are computed in analog current-mode instead of digital format in order to fully explore massively parallel processing capability of the neural networks. A programmable pulse-coded neural network based on the hippocampal kernel functions can process the pulse information efficiently. The model-based approach saves silicon area and achieves adequate accuracy level. Circuit-level simulation results and experimental data are also presented.</description><identifier>ISBN: 9780780344556</identifier><identifier>ISBN: 0780344553</identifier><identifier>DOI: 10.1109/ISCAS.1998.703890</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analog computers ; Biological neural networks ; Brain modeling ; Kernel ; Microelectronics ; Nonlinear systems ; Process control ; Signal processing ; Silicon ; Transistors</subject><ispartof>1998 IEEE International Symposium on Circuits and Systems (ISCAS), 1998, Vol.3, p.37-40 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/703890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/703890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsai, R.H.</creatorcontrib><creatorcontrib>Sheu, B.J.</creatorcontrib><creatorcontrib>Berger, T.W.</creatorcontrib><title>A programmable neural processor for pulse-coded hippocampal signal</title><title>1998 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>Rapid advances in submicron microelectronic technologies have made possible the integration of millions of transistors on a single silicon chip for complex signal processing and control functions. The hippocampal region of the brain system can be analyzed with a nonlinear system modeling approach. The input-output relationship of the neural units is represented by the kernel functions of various complexities. The modeling expressions of the first and second order kernels are computed in analog current-mode instead of digital format in order to fully explore massively parallel processing capability of the neural networks. A programmable pulse-coded neural network based on the hippocampal kernel functions can process the pulse information efficiently. The model-based approach saves silicon area and achieves adequate accuracy level. Circuit-level simulation results and experimental data are also presented.</description><subject>Analog computers</subject><subject>Biological neural networks</subject><subject>Brain modeling</subject><subject>Kernel</subject><subject>Microelectronics</subject><subject>Nonlinear systems</subject><subject>Process control</subject><subject>Signal processing</subject><subject>Silicon</subject><subject>Transistors</subject><isbn>9780780344556</isbn><isbn>0780344553</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8tqwzAQFJRCSuoPSE_-AbtaPWzp6Jo-AoEc0p6DHuvUxY6F1Bz691VJh1mGGYaFIWQDtAag-nF76LtDDVqruqVcaXpDCt0qmsmFkLJZkSKlL5qRHeX6jjx1ZYjLKZp5NnbC8oyXaKa_zGFKSyyHfOEyJazc4tGXn2MIizNzyK00ns5muie3g8mF4l_X5OPl-b1_q3b7123f7aoRqPiumIamtYKBkQy4s8Zb8B44BTBMYcOkBOGAMkSnWtQNehicc2pw3nKr-Jo8XP-OiHgMcZxN_Dleh_JfRxNJvg</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Tsai, R.H.</creator><creator>Sheu, B.J.</creator><creator>Berger, T.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>A programmable neural processor for pulse-coded hippocampal signal</title><author>Tsai, R.H. ; Sheu, B.J. ; Berger, T.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-29167b421a5213cbadb1dd13011a28e625514c102eec87e96ed1fccc8fcdb3b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analog computers</topic><topic>Biological neural networks</topic><topic>Brain modeling</topic><topic>Kernel</topic><topic>Microelectronics</topic><topic>Nonlinear systems</topic><topic>Process control</topic><topic>Signal processing</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsai, R.H.</creatorcontrib><creatorcontrib>Sheu, B.J.</creatorcontrib><creatorcontrib>Berger, T.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsai, R.H.</au><au>Sheu, B.J.</au><au>Berger, T.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A programmable neural processor for pulse-coded hippocampal signal</atitle><btitle>1998 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>1998</date><risdate>1998</risdate><volume>3</volume><spage>37</spage><epage>40 vol.3</epage><pages>37-40 vol.3</pages><isbn>9780780344556</isbn><isbn>0780344553</isbn><abstract>Rapid advances in submicron microelectronic technologies have made possible the integration of millions of transistors on a single silicon chip for complex signal processing and control functions. The hippocampal region of the brain system can be analyzed with a nonlinear system modeling approach. The input-output relationship of the neural units is represented by the kernel functions of various complexities. The modeling expressions of the first and second order kernels are computed in analog current-mode instead of digital format in order to fully explore massively parallel processing capability of the neural networks. A programmable pulse-coded neural network based on the hippocampal kernel functions can process the pulse information efficiently. The model-based approach saves silicon area and achieves adequate accuracy level. Circuit-level simulation results and experimental data are also presented.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.1998.703890</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780344556
ispartof 1998 IEEE International Symposium on Circuits and Systems (ISCAS), 1998, Vol.3, p.37-40 vol.3
issn
language eng
recordid cdi_ieee_primary_703890
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analog computers
Biological neural networks
Brain modeling
Kernel
Microelectronics
Nonlinear systems
Process control
Signal processing
Silicon
Transistors
title A programmable neural processor for pulse-coded hippocampal signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20programmable%20neural%20processor%20for%20pulse-coded%20hippocampal%20signal&rft.btitle=1998%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Tsai,%20R.H.&rft.date=1998&rft.volume=3&rft.spage=37&rft.epage=40%20vol.3&rft.pages=37-40%20vol.3&rft.isbn=9780780344556&rft.isbn_list=0780344553&rft_id=info:doi/10.1109/ISCAS.1998.703890&rft_dat=%3Cieee_6IE%3E703890%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=703890&rfr_iscdi=true