Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation
We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); her...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2015-05, Vol.63 (5), p.2122-2134 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2134 |
---|---|
container_issue | 5 |
container_start_page | 2122 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 63 |
creator | Mengmeng Li Francavilla, Matteo Alessandro Rushan Chen Vecchi, Giuseppe |
description | We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work. |
doi_str_mv | 10.1109/TAP.2015.2402297 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7038141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7038141</ieee_id><sourcerecordid>7038141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-b109ff767b79f8dd75497387988c3ca774a7f7c208e7895a5469262880904dba3</originalsourceid><addsrcrecordid>eNotT19LwzAcDKJgnb4LvuQLdCZpsiSPZWxuuKmw-edtpM2vI1LbmqSi396AvtxxHHfHIXRNyZRSom_35dOUESqmjBPGtDxBGRVC5YwxeooyQqjKNZu9naOLEN6T5IrzDIVXZ6EyncVLEyK-B99Bm687CwMk6CLe9hZa1x1x3-CN8UfA27GNLtSmBbyLfqzj6CHgF2fwA4QIFi8-R_eV7JTe9aOvAZfD4Ptv92Gi67tLdNaYNsDVP0_Q83Kxn6_yzePdel5uckeJiHmVbjWNnMlK6kZZKwXXslBSK1UXtZGSG9nImhEFUmlhBJ-lg0wpogm3lSkm6Oav1wHAYfBp3v8cJCkU5bT4BY-_WpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</creator><creatorcontrib>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</creatorcontrib><description>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2402297</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Couplings ; fast solvers ; Integral equations ; Kernel ; low-rank approximation ; Surface treatment ; Testing ; Wideband</subject><ispartof>IEEE transactions on antennas and propagation, 2015-05, Vol.63 (5), p.2122-2134</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7038141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7038141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mengmeng Li</creatorcontrib><creatorcontrib>Francavilla, Matteo Alessandro</creatorcontrib><creatorcontrib>Rushan Chen</creatorcontrib><creatorcontrib>Vecchi, Giuseppe</creatorcontrib><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Couplings</subject><subject>fast solvers</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>low-rank approximation</subject><subject>Surface treatment</subject><subject>Testing</subject><subject>Wideband</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotT19LwzAcDKJgnb4LvuQLdCZpsiSPZWxuuKmw-edtpM2vI1LbmqSi396AvtxxHHfHIXRNyZRSom_35dOUESqmjBPGtDxBGRVC5YwxeooyQqjKNZu9naOLEN6T5IrzDIVXZ6EyncVLEyK-B99Bm687CwMk6CLe9hZa1x1x3-CN8UfA27GNLtSmBbyLfqzj6CHgF2fwA4QIFi8-R_eV7JTe9aOvAZfD4Ptv92Gi67tLdNaYNsDVP0_Q83Kxn6_yzePdel5uckeJiHmVbjWNnMlK6kZZKwXXslBSK1UXtZGSG9nImhEFUmlhBJ-lg0wpogm3lSkm6Oav1wHAYfBp3v8cJCkU5bT4BY-_WpQ</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Mengmeng Li</creator><creator>Francavilla, Matteo Alessandro</creator><creator>Rushan Chen</creator><creator>Vecchi, Giuseppe</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>201505</creationdate><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><author>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-b109ff767b79f8dd75497387988c3ca774a7f7c208e7895a5469262880904dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Couplings</topic><topic>fast solvers</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>low-rank approximation</topic><topic>Surface treatment</topic><topic>Testing</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mengmeng Li</creatorcontrib><creatorcontrib>Francavilla, Matteo Alessandro</creatorcontrib><creatorcontrib>Rushan Chen</creatorcontrib><creatorcontrib>Vecchi, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mengmeng Li</au><au>Francavilla, Matteo Alessandro</au><au>Rushan Chen</au><au>Vecchi, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-05</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>2122</spage><epage>2134</epage><pages>2122-2134</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2402297</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2015-05, Vol.63 (5), p.2122-2134 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_7038141 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation algorithms Approximation methods Couplings fast solvers Integral equations Kernel low-rank approximation Surface treatment Testing Wideband |
title | Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20Fast%20Kernel-Independent%20Modeling%20of%20Large%20Multiscale%20Structures%20Via%20Nested%20Equivalent%20Source%20Approximation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Mengmeng%20Li&rft.date=2015-05&rft.volume=63&rft.issue=5&rft.spage=2122&rft.epage=2134&rft.pages=2122-2134&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2402297&rft_dat=%3Cieee_RIE%3E7038141%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7038141&rfr_iscdi=true |