Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation

We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2015-05, Vol.63 (5), p.2122-2134
Hauptverfasser: Mengmeng Li, Francavilla, Matteo Alessandro, Rushan Chen, Vecchi, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2134
container_issue 5
container_start_page 2122
container_title IEEE transactions on antennas and propagation
container_volume 63
creator Mengmeng Li
Francavilla, Matteo Alessandro
Rushan Chen
Vecchi, Giuseppe
description We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.
doi_str_mv 10.1109/TAP.2015.2402297
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_7038141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7038141</ieee_id><sourcerecordid>7038141</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-b109ff767b79f8dd75497387988c3ca774a7f7c208e7895a5469262880904dba3</originalsourceid><addsrcrecordid>eNotT19LwzAcDKJgnb4LvuQLdCZpsiSPZWxuuKmw-edtpM2vI1LbmqSi396AvtxxHHfHIXRNyZRSom_35dOUESqmjBPGtDxBGRVC5YwxeooyQqjKNZu9naOLEN6T5IrzDIVXZ6EyncVLEyK-B99Bm687CwMk6CLe9hZa1x1x3-CN8UfA27GNLtSmBbyLfqzj6CHgF2fwA4QIFi8-R_eV7JTe9aOvAZfD4Ptv92Gi67tLdNaYNsDVP0_Q83Kxn6_yzePdel5uckeJiHmVbjWNnMlK6kZZKwXXslBSK1UXtZGSG9nImhEFUmlhBJ-lg0wpogm3lSkm6Oav1wHAYfBp3v8cJCkU5bT4BY-_WpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</creator><creatorcontrib>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</creatorcontrib><description>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2402297</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Couplings ; fast solvers ; Integral equations ; Kernel ; low-rank approximation ; Surface treatment ; Testing ; Wideband</subject><ispartof>IEEE transactions on antennas and propagation, 2015-05, Vol.63 (5), p.2122-2134</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7038141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7038141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mengmeng Li</creatorcontrib><creatorcontrib>Francavilla, Matteo Alessandro</creatorcontrib><creatorcontrib>Rushan Chen</creatorcontrib><creatorcontrib>Vecchi, Giuseppe</creatorcontrib><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Couplings</subject><subject>fast solvers</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>low-rank approximation</subject><subject>Surface treatment</subject><subject>Testing</subject><subject>Wideband</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotT19LwzAcDKJgnb4LvuQLdCZpsiSPZWxuuKmw-edtpM2vI1LbmqSi396AvtxxHHfHIXRNyZRSom_35dOUESqmjBPGtDxBGRVC5YwxeooyQqjKNZu9naOLEN6T5IrzDIVXZ6EyncVLEyK-B99Bm687CwMk6CLe9hZa1x1x3-CN8UfA27GNLtSmBbyLfqzj6CHgF2fwA4QIFi8-R_eV7JTe9aOvAZfD4Ptv92Gi67tLdNaYNsDVP0_Q83Kxn6_yzePdel5uckeJiHmVbjWNnMlK6kZZKwXXslBSK1UXtZGSG9nImhEFUmlhBJ-lg0wpogm3lSkm6Oav1wHAYfBp3v8cJCkU5bT4BY-_WpQ</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Mengmeng Li</creator><creator>Francavilla, Matteo Alessandro</creator><creator>Rushan Chen</creator><creator>Vecchi, Giuseppe</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>201505</creationdate><title>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</title><author>Mengmeng Li ; Francavilla, Matteo Alessandro ; Rushan Chen ; Vecchi, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-b109ff767b79f8dd75497387988c3ca774a7f7c208e7895a5469262880904dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Couplings</topic><topic>fast solvers</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>low-rank approximation</topic><topic>Surface treatment</topic><topic>Testing</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mengmeng Li</creatorcontrib><creatorcontrib>Francavilla, Matteo Alessandro</creatorcontrib><creatorcontrib>Rushan Chen</creatorcontrib><creatorcontrib>Vecchi, Giuseppe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mengmeng Li</au><au>Francavilla, Matteo Alessandro</au><au>Rushan Chen</au><au>Vecchi, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-05</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>2122</spage><epage>2134</epage><pages>2122-2134</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We propose a wideband fast kernel-independent modeling of large multiscale structures; we employ a nested equivalent source approximation (NESA) to compress the dense system matrix. The NESA was introduced by these authors for low and moderate frequency problems (smaller than a few wavelengths); here, we introduce a high-frequency NESA algorithm, and propose a hybrid version with extreme wideband properties. The equivalent sources of the wideband NESA (WNESA) are obtained by an inverse-source process, enforcing equivalence of radiated fields on suitably defined testing surfaces. In the low-frequency region, the NESA is used unmodified, with a complexity of O(N). In the high-frequency region, in order to obtain a fixed rank matrix compression, we hierarchically divide the far coupling space into pyramids with angles related to the peer coupling group size, and the NESA testing surfaces are defined as the boundaries of the pyramids. This results in a directional nested low-rank (fixed rank) approximation with O(N log N) computational complexity that is kernel independent; overall, the approach yields wideband fast solver for the modeling of large structures that inherits the efficiency and accuracy of low-frequency NESA for multiscale problems. Numerical results and discussions demonstrate the validity of the proposed work.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2402297</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2015-05, Vol.63 (5), p.2122-2134
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_7038141
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Approximation methods
Couplings
fast solvers
Integral equations
Kernel
low-rank approximation
Surface treatment
Testing
Wideband
title Wideband Fast Kernel-Independent Modeling of Large Multiscale Structures Via Nested Equivalent Source Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20Fast%20Kernel-Independent%20Modeling%20of%20Large%20Multiscale%20Structures%20Via%20Nested%20Equivalent%20Source%20Approximation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Mengmeng%20Li&rft.date=2015-05&rft.volume=63&rft.issue=5&rft.spage=2122&rft.epage=2134&rft.pages=2122-2134&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2402297&rft_dat=%3Cieee_RIE%3E7038141%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7038141&rfr_iscdi=true