Detecting False Data Injection Attacks in AC State Estimation
Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state es...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2015-09, Vol.6 (5), p.2476-2483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2483 |
---|---|
container_issue | 5 |
container_start_page | 2476 |
container_title | IEEE transactions on smart grid |
container_volume | 6 |
creator | Gu Chaojun Jirutitijaroen, Panida Motani, Mehul |
description | Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks. |
doi_str_mv | 10.1109/TSG.2015.2388545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7035067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7035067</ieee_id><sourcerecordid>3932009201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLR3wcuC562TTLLZHDyUflkoeGg9h5gP2aq7dZMe_PdmaelcZph535nhIeSBwoRSUM-77WrCgIoJw7oWXFyREVVclQgVvb7UAm_JOMY95EDEiqkReZn75G1q2s9iab6jL-YmmWLd7odm1xbTlIz9ikWTy1mxTSb5YhFT82OG8T25CYNrfM535H252M1ey83baj2bbkrLZZ1KaatgEMCxQD3jqCwNjAfpwHmGtuZBieA-ai-pw8ohF9IGdAbRVhUoj3fk6bT30He_Rx-T3nfHvs0nNZVCCRBUQVbBSWX7LsbeB33o86P9n6agB046c9IDJ33mlC2PJ0vjvb_IJaCASuI_dJlh5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759505190</pqid></control><display><type>article</type><title>Detecting False Data Injection Attacks in AC State Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</creator><creatorcontrib>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</creatorcontrib><description>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2015.2388545</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Current measurement ; Electric utilities ; False data injection ; Histograms ; Indexes ; Kullback--Leibler {distance} (KLD) ; Reactive power ; State estimation ; Transmission line measurements</subject><ispartof>IEEE transactions on smart grid, 2015-09, Vol.6 (5), p.2476-2483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</citedby><cites>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7035067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7035067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu Chaojun</creatorcontrib><creatorcontrib>Jirutitijaroen, Panida</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><title>Detecting False Data Injection Attacks in AC State Estimation</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</description><subject>Current measurement</subject><subject>Electric utilities</subject><subject>False data injection</subject><subject>Histograms</subject><subject>Indexes</subject><subject>Kullback--Leibler {distance} (KLD)</subject><subject>Reactive power</subject><subject>State estimation</subject><subject>Transmission line measurements</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWLR3wcuC562TTLLZHDyUflkoeGg9h5gP2aq7dZMe_PdmaelcZph535nhIeSBwoRSUM-77WrCgIoJw7oWXFyREVVclQgVvb7UAm_JOMY95EDEiqkReZn75G1q2s9iab6jL-YmmWLd7odm1xbTlIz9ikWTy1mxTSb5YhFT82OG8T25CYNrfM535H252M1ey83baj2bbkrLZZ1KaatgEMCxQD3jqCwNjAfpwHmGtuZBieA-ai-pw8ohF9IGdAbRVhUoj3fk6bT30He_Rx-T3nfHvs0nNZVCCRBUQVbBSWX7LsbeB33o86P9n6agB046c9IDJ33mlC2PJ0vjvb_IJaCASuI_dJlh5Q</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Gu Chaojun</creator><creator>Jirutitijaroen, Panida</creator><creator>Motani, Mehul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Detecting False Data Injection Attacks in AC State Estimation</title><author>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Current measurement</topic><topic>Electric utilities</topic><topic>False data injection</topic><topic>Histograms</topic><topic>Indexes</topic><topic>Kullback--Leibler {distance} (KLD)</topic><topic>Reactive power</topic><topic>State estimation</topic><topic>Transmission line measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu Chaojun</creatorcontrib><creatorcontrib>Jirutitijaroen, Panida</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu Chaojun</au><au>Jirutitijaroen, Panida</au><au>Motani, Mehul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting False Data Injection Attacks in AC State Estimation</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>6</volume><issue>5</issue><spage>2476</spage><epage>2483</epage><pages>2476-2483</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2015.2388545</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2015-09, Vol.6 (5), p.2476-2483 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_7035067 |
source | IEEE Electronic Library (IEL) |
subjects | Current measurement Electric utilities False data injection Histograms Indexes Kullback--Leibler {distance} (KLD) Reactive power State estimation Transmission line measurements |
title | Detecting False Data Injection Attacks in AC State Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20False%20Data%20Injection%20Attacks%20in%20AC%20State%20Estimation&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Gu%20Chaojun&rft.date=2015-09-01&rft.volume=6&rft.issue=5&rft.spage=2476&rft.epage=2483&rft.pages=2476-2483&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2015.2388545&rft_dat=%3Cproquest_RIE%3E3932009201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759505190&rft_id=info:pmid/&rft_ieee_id=7035067&rfr_iscdi=true |