Detecting False Data Injection Attacks in AC State Estimation

Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2015-09, Vol.6 (5), p.2476-2483
Hauptverfasser: Gu Chaojun, Jirutitijaroen, Panida, Motani, Mehul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2483
container_issue 5
container_start_page 2476
container_title IEEE transactions on smart grid
container_volume 6
creator Gu Chaojun
Jirutitijaroen, Panida
Motani, Mehul
description Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.
doi_str_mv 10.1109/TSG.2015.2388545
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7035067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7035067</ieee_id><sourcerecordid>3932009201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLR3wcuC562TTLLZHDyUflkoeGg9h5gP2aq7dZMe_PdmaelcZph535nhIeSBwoRSUM-77WrCgIoJw7oWXFyREVVclQgVvb7UAm_JOMY95EDEiqkReZn75G1q2s9iab6jL-YmmWLd7odm1xbTlIz9ikWTy1mxTSb5YhFT82OG8T25CYNrfM535H252M1ey83baj2bbkrLZZ1KaatgEMCxQD3jqCwNjAfpwHmGtuZBieA-ai-pw8ohF9IGdAbRVhUoj3fk6bT30He_Rx-T3nfHvs0nNZVCCRBUQVbBSWX7LsbeB33o86P9n6agB046c9IDJ33mlC2PJ0vjvb_IJaCASuI_dJlh5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759505190</pqid></control><display><type>article</type><title>Detecting False Data Injection Attacks in AC State Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</creator><creatorcontrib>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</creatorcontrib><description>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2015.2388545</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Current measurement ; Electric utilities ; False data injection ; Histograms ; Indexes ; Kullback--Leibler {distance} (KLD) ; Reactive power ; State estimation ; Transmission line measurements</subject><ispartof>IEEE transactions on smart grid, 2015-09, Vol.6 (5), p.2476-2483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</citedby><cites>FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7035067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7035067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu Chaojun</creatorcontrib><creatorcontrib>Jirutitijaroen, Panida</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><title>Detecting False Data Injection Attacks in AC State Estimation</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</description><subject>Current measurement</subject><subject>Electric utilities</subject><subject>False data injection</subject><subject>Histograms</subject><subject>Indexes</subject><subject>Kullback--Leibler {distance} (KLD)</subject><subject>Reactive power</subject><subject>State estimation</subject><subject>Transmission line measurements</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWLR3wcuC562TTLLZHDyUflkoeGg9h5gP2aq7dZMe_PdmaelcZph535nhIeSBwoRSUM-77WrCgIoJw7oWXFyREVVclQgVvb7UAm_JOMY95EDEiqkReZn75G1q2s9iab6jL-YmmWLd7odm1xbTlIz9ikWTy1mxTSb5YhFT82OG8T25CYNrfM535H252M1ey83baj2bbkrLZZ1KaatgEMCxQD3jqCwNjAfpwHmGtuZBieA-ai-pw8ohF9IGdAbRVhUoj3fk6bT30He_Rx-T3nfHvs0nNZVCCRBUQVbBSWX7LsbeB33o86P9n6agB046c9IDJ33mlC2PJ0vjvb_IJaCASuI_dJlh5Q</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Gu Chaojun</creator><creator>Jirutitijaroen, Panida</creator><creator>Motani, Mehul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Detecting False Data Injection Attacks in AC State Estimation</title><author>Gu Chaojun ; Jirutitijaroen, Panida ; Motani, Mehul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-7c6fa300d2f1e2439c1f24f7d0de23c84f95fdb8e71d36d3457cf3da33c6609e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Current measurement</topic><topic>Electric utilities</topic><topic>False data injection</topic><topic>Histograms</topic><topic>Indexes</topic><topic>Kullback--Leibler {distance} (KLD)</topic><topic>Reactive power</topic><topic>State estimation</topic><topic>Transmission line measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu Chaojun</creatorcontrib><creatorcontrib>Jirutitijaroen, Panida</creatorcontrib><creatorcontrib>Motani, Mehul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu Chaojun</au><au>Jirutitijaroen, Panida</au><au>Motani, Mehul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting False Data Injection Attacks in AC State Estimation</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>6</volume><issue>5</issue><spage>2476</spage><epage>2483</epage><pages>2476-2483</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Estimating power system states accurately is crucial to the reliable operation of power grids. Traditional weighted least square (WLS) state estimation methods face the rising threat of cyber-attacks, such as false data injection attacks, which can pass the bad data detection process in WLS state estimation. In this paper, we propose a new detection method to detect false data injection attacks by tracking the dynamics of measurement variations. The Kullback-Leibler distance (KLD) is used to calculate the distance between two probability distributions derived from measurement variations. When false data are injected into the power systems, the probability distributions of the measurement variations will deviate from the historical data, thus leading to a larger KLD. The proposed method is tested on IEEE 14 bus system using load data from the New York independent system operator with different attack scenarios. We have also tested our method on false data injection attacks that replace current measurement data with historical measurement data. Test results show that the proposed approach can accurately detect most of the attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2015.2388545</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2015-09, Vol.6 (5), p.2476-2483
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_7035067
source IEEE Electronic Library (IEL)
subjects Current measurement
Electric utilities
False data injection
Histograms
Indexes
Kullback--Leibler {distance} (KLD)
Reactive power
State estimation
Transmission line measurements
title Detecting False Data Injection Attacks in AC State Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20False%20Data%20Injection%20Attacks%20in%20AC%20State%20Estimation&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Gu%20Chaojun&rft.date=2015-09-01&rft.volume=6&rft.issue=5&rft.spage=2476&rft.epage=2483&rft.pages=2476-2483&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2015.2388545&rft_dat=%3Cproquest_RIE%3E3932009201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759505190&rft_id=info:pmid/&rft_ieee_id=7035067&rfr_iscdi=true