Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning
The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2014-12, Vol.12 (8), p.1615-1624 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1624 |
---|---|
container_issue | 8 |
container_start_page | 1615 |
container_title | Revista IEEE América Latina |
container_volume | 12 |
creator | Antunes, Fabio Ribeiro de Alencar, Thiago Teixeira Leite, Patricia Vitorri, Karla de Andrade Lira Rabelo, Ricardo Lozano Toufen, Dennis |
description | The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation. |
doi_str_mv | 10.1109/TLA.2014.7014536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7014536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7014536</ieee_id><sourcerecordid>1669907166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1226-225739235f9507e4a1ab39e78b162584d2921f1f874f2543f9211e62680cee7f3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsFbvgpeAFy9bk-xHNse1qBUKLVjPId1O2pTdZE22aP31pmwV8TIfzDMvM7xRdE3wiBDM7xfTckQxSUcshCzJT6IBydIixpzT0z_1eXTh_RbjpMiLZBB9LqDaGP2-A4-sQt0G0KztdKO_ZKetQQ_Swwppg0rXaaUrLWv0Yjqoa70GUwEq27bWAeksmuxXzgYF1wRobj_Aode976DxQRNcLzivpTHarC-jMyVrD1fHPIzenh4X40k8nT2_jMtpXBFK85jSjCWcJpniGWaQSiKXCQdWLElOsyJdUU6JIqpgqaJZmqjQEshpXuAKgKlkGN31uq2zhy870WhfhfulAbvzguQ555iFFNDbf-jW7pwJ1wUqZYyTgAUK91TlrPcOlGidbqTbC4LFwQoRrBAHK8TRirBy069oAPjFf6bfB_aEXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647791716</pqid></control><display><type>article</type><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</creator><creatorcontrib>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</creatorcontrib><description>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2014.7014536</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Abstracts ; Ant colony optimization ; Artificial intelligence ; Brazil ; Expert systems ; Genetic algorithms ; Heuristic ; Hydrothermal Power Systems ; Nonlinear dynamics ; Optimization ; Optimization techniques ; Planning ; Power generation ; Power plants ; Power systems</subject><ispartof>Revista IEEE América Latina, 2014-12, Vol.12 (8), p.1615-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7014536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7014536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Antunes, Fabio</creatorcontrib><creatorcontrib>Ribeiro de Alencar, Thiago</creatorcontrib><creatorcontrib>Teixeira Leite, Patricia</creatorcontrib><creatorcontrib>Vitorri, Karla</creatorcontrib><creatorcontrib>de Andrade Lira Rabelo, Ricardo</creatorcontrib><creatorcontrib>Lozano Toufen, Dennis</creatorcontrib><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</description><subject>Abstracts</subject><subject>Ant colony optimization</subject><subject>Artificial intelligence</subject><subject>Brazil</subject><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Hydrothermal Power Systems</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Planning</subject><subject>Power generation</subject><subject>Power plants</subject><subject>Power systems</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhhdRsFbvgpeAFy9bk-xHNse1qBUKLVjPId1O2pTdZE22aP31pmwV8TIfzDMvM7xRdE3wiBDM7xfTckQxSUcshCzJT6IBydIixpzT0z_1eXTh_RbjpMiLZBB9LqDaGP2-A4-sQt0G0KztdKO_ZKetQQ_Swwppg0rXaaUrLWv0Yjqoa70GUwEq27bWAeksmuxXzgYF1wRobj_Aode976DxQRNcLzivpTHarC-jMyVrD1fHPIzenh4X40k8nT2_jMtpXBFK85jSjCWcJpniGWaQSiKXCQdWLElOsyJdUU6JIqpgqaJZmqjQEshpXuAKgKlkGN31uq2zhy870WhfhfulAbvzguQ555iFFNDbf-jW7pwJ1wUqZYyTgAUK91TlrPcOlGidbqTbC4LFwQoRrBAHK8TRirBy069oAPjFf6bfB_aEXg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Antunes, Fabio</creator><creator>Ribeiro de Alencar, Thiago</creator><creator>Teixeira Leite, Patricia</creator><creator>Vitorri, Karla</creator><creator>de Andrade Lira Rabelo, Ricardo</creator><creator>Lozano Toufen, Dennis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201412</creationdate><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><author>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1226-225739235f9507e4a1ab39e78b162584d2921f1f874f2543f9211e62680cee7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstracts</topic><topic>Ant colony optimization</topic><topic>Artificial intelligence</topic><topic>Brazil</topic><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Hydrothermal Power Systems</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Planning</topic><topic>Power generation</topic><topic>Power plants</topic><topic>Power systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Antunes, Fabio</creatorcontrib><creatorcontrib>Ribeiro de Alencar, Thiago</creatorcontrib><creatorcontrib>Teixeira Leite, Patricia</creatorcontrib><creatorcontrib>Vitorri, Karla</creatorcontrib><creatorcontrib>de Andrade Lira Rabelo, Ricardo</creatorcontrib><creatorcontrib>Lozano Toufen, Dennis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antunes, Fabio</au><au>Ribeiro de Alencar, Thiago</au><au>Teixeira Leite, Patricia</au><au>Vitorri, Karla</au><au>de Andrade Lira Rabelo, Ricardo</au><au>Lozano Toufen, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2014-12</date><risdate>2014</risdate><volume>12</volume><issue>8</issue><spage>1615</spage><epage>1624</epage><pages>1615-1624</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2014.7014536</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2014-12, Vol.12 (8), p.1615-1624 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_ieee_primary_7014536 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Abstracts Ant colony optimization Artificial intelligence Brazil Expert systems Genetic algorithms Heuristic Hydrothermal Power Systems Nonlinear dynamics Optimization Optimization techniques Planning Power generation Power plants Power systems |
title | Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20of%20the%20Optimization%20Based%20in%20Artificial%20Intelligence%20Applied%20to%20Hydrothermal%20Power%20Systems%20Operation%20Planning&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Antunes,%20Fabio&rft.date=2014-12&rft.volume=12&rft.issue=8&rft.spage=1615&rft.epage=1624&rft.pages=1615-1624&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2014.7014536&rft_dat=%3Cproquest_RIE%3E1669907166%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647791716&rft_id=info:pmid/&rft_ieee_id=7014536&rfr_iscdi=true |