Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning

The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2014-12, Vol.12 (8), p.1615-1624
Hauptverfasser: Antunes, Fabio, Ribeiro de Alencar, Thiago, Teixeira Leite, Patricia, Vitorri, Karla, de Andrade Lira Rabelo, Ricardo, Lozano Toufen, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1624
container_issue 8
container_start_page 1615
container_title Revista IEEE América Latina
container_volume 12
creator Antunes, Fabio
Ribeiro de Alencar, Thiago
Teixeira Leite, Patricia
Vitorri, Karla
de Andrade Lira Rabelo, Ricardo
Lozano Toufen, Dennis
description The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.
doi_str_mv 10.1109/TLA.2014.7014536
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7014536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7014536</ieee_id><sourcerecordid>1669907166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1226-225739235f9507e4a1ab39e78b162584d2921f1f874f2543f9211e62680cee7f3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdRsFbvgpeAFy9bk-xHNse1qBUKLVjPId1O2pTdZE22aP31pmwV8TIfzDMvM7xRdE3wiBDM7xfTckQxSUcshCzJT6IBydIixpzT0z_1eXTh_RbjpMiLZBB9LqDaGP2-A4-sQt0G0KztdKO_ZKetQQ_Swwppg0rXaaUrLWv0Yjqoa70GUwEq27bWAeksmuxXzgYF1wRobj_Aode976DxQRNcLzivpTHarC-jMyVrD1fHPIzenh4X40k8nT2_jMtpXBFK85jSjCWcJpniGWaQSiKXCQdWLElOsyJdUU6JIqpgqaJZmqjQEshpXuAKgKlkGN31uq2zhy870WhfhfulAbvzguQ555iFFNDbf-jW7pwJ1wUqZYyTgAUK91TlrPcOlGidbqTbC4LFwQoRrBAHK8TRirBy069oAPjFf6bfB_aEXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647791716</pqid></control><display><type>article</type><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</creator><creatorcontrib>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</creatorcontrib><description>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2014.7014536</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Abstracts ; Ant colony optimization ; Artificial intelligence ; Brazil ; Expert systems ; Genetic algorithms ; Heuristic ; Hydrothermal Power Systems ; Nonlinear dynamics ; Optimization ; Optimization techniques ; Planning ; Power generation ; Power plants ; Power systems</subject><ispartof>Revista IEEE América Latina, 2014-12, Vol.12 (8), p.1615-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7014536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7014536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Antunes, Fabio</creatorcontrib><creatorcontrib>Ribeiro de Alencar, Thiago</creatorcontrib><creatorcontrib>Teixeira Leite, Patricia</creatorcontrib><creatorcontrib>Vitorri, Karla</creatorcontrib><creatorcontrib>de Andrade Lira Rabelo, Ricardo</creatorcontrib><creatorcontrib>Lozano Toufen, Dennis</creatorcontrib><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</description><subject>Abstracts</subject><subject>Ant colony optimization</subject><subject>Artificial intelligence</subject><subject>Brazil</subject><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Hydrothermal Power Systems</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Planning</subject><subject>Power generation</subject><subject>Power plants</subject><subject>Power systems</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhhdRsFbvgpeAFy9bk-xHNse1qBUKLVjPId1O2pTdZE22aP31pmwV8TIfzDMvM7xRdE3wiBDM7xfTckQxSUcshCzJT6IBydIixpzT0z_1eXTh_RbjpMiLZBB9LqDaGP2-A4-sQt0G0KztdKO_ZKetQQ_Swwppg0rXaaUrLWv0Yjqoa70GUwEq27bWAeksmuxXzgYF1wRobj_Aode976DxQRNcLzivpTHarC-jMyVrD1fHPIzenh4X40k8nT2_jMtpXBFK85jSjCWcJpniGWaQSiKXCQdWLElOsyJdUU6JIqpgqaJZmqjQEshpXuAKgKlkGN31uq2zhy870WhfhfulAbvzguQ555iFFNDbf-jW7pwJ1wUqZYyTgAUK91TlrPcOlGidbqTbC4LFwQoRrBAHK8TRirBy069oAPjFf6bfB_aEXg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Antunes, Fabio</creator><creator>Ribeiro de Alencar, Thiago</creator><creator>Teixeira Leite, Patricia</creator><creator>Vitorri, Karla</creator><creator>de Andrade Lira Rabelo, Ricardo</creator><creator>Lozano Toufen, Dennis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201412</creationdate><title>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</title><author>Antunes, Fabio ; Ribeiro de Alencar, Thiago ; Teixeira Leite, Patricia ; Vitorri, Karla ; de Andrade Lira Rabelo, Ricardo ; Lozano Toufen, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1226-225739235f9507e4a1ab39e78b162584d2921f1f874f2543f9211e62680cee7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abstracts</topic><topic>Ant colony optimization</topic><topic>Artificial intelligence</topic><topic>Brazil</topic><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Hydrothermal Power Systems</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Planning</topic><topic>Power generation</topic><topic>Power plants</topic><topic>Power systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Antunes, Fabio</creatorcontrib><creatorcontrib>Ribeiro de Alencar, Thiago</creatorcontrib><creatorcontrib>Teixeira Leite, Patricia</creatorcontrib><creatorcontrib>Vitorri, Karla</creatorcontrib><creatorcontrib>de Andrade Lira Rabelo, Ricardo</creatorcontrib><creatorcontrib>Lozano Toufen, Dennis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antunes, Fabio</au><au>Ribeiro de Alencar, Thiago</au><au>Teixeira Leite, Patricia</au><au>Vitorri, Karla</au><au>de Andrade Lira Rabelo, Ricardo</au><au>Lozano Toufen, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2014-12</date><risdate>2014</risdate><volume>12</volume><issue>8</issue><spage>1615</spage><epage>1624</epage><pages>1615-1624</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The Hydrothermal Power Systems Operation Planning (HPSOP) aims to determine a strategy for each generation plant at each time interval in order to minimize the expected value of operating costs in the planning horizon. This is a challenge for managers of the Energy Sector, because of the stochastic nature of the problem which is coupled in time (dynamic) and in space (interconnected), large, not separable, non-convex and the target function is non-linear. Therefore, the application of classical techniques presents several limitations. In order to overcome those limitations, improvement of traditional methods, or the development of alternative heuristics is a vital step in the operation of HPSOP. This paper presents an application of two of this new heuristics of Artificial Intelligence: Genetic Algorithms and Ant Colony Optimization. Those techniques were applied to a test system with data from Brazilian power plants. The results showed a good performance when compared with traditional optimization techniques already used in HPSOP. It is noteworthy that in the current study, the applications of traditional optimization techniques and Artificial Intelligence have made use of real characteristics of plant operation without the need to simplify the original formulation.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2014.7014536</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2014-12, Vol.12 (8), p.1615-1624
issn 1548-0992
1548-0992
language eng
recordid cdi_ieee_primary_7014536
source IEEE/IET Electronic Library (IEL)
subjects Abstracts
Ant colony optimization
Artificial intelligence
Brazil
Expert systems
Genetic algorithms
Heuristic
Hydrothermal Power Systems
Nonlinear dynamics
Optimization
Optimization techniques
Planning
Power generation
Power plants
Power systems
title Techniques of the Optimization Based in Artificial Intelligence Applied to Hydrothermal Power Systems Operation Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20of%20the%20Optimization%20Based%20in%20Artificial%20Intelligence%20Applied%20to%20Hydrothermal%20Power%20Systems%20Operation%20Planning&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Antunes,%20Fabio&rft.date=2014-12&rft.volume=12&rft.issue=8&rft.spage=1615&rft.epage=1624&rft.pages=1615-1624&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2014.7014536&rft_dat=%3Cproquest_RIE%3E1669907166%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647791716&rft_id=info:pmid/&rft_ieee_id=7014536&rfr_iscdi=true