Kriging-Based Self-Adaptive Cloud Controllers

Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2016-05, Vol.9 (3), p.368-381
Hauptverfasser: Gambi, Alessio, Pezze, Mauro, Toffetti, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 3
container_start_page 368
container_title IEEE transactions on services computing
container_volume 9
creator Gambi, Alessio
Pezze, Mauro
Toffetti, Giovanni
description Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.
doi_str_mv 10.1109/TSC.2015.2389236
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7004890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004890</ieee_id><sourcerecordid>4086964491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuCGzdT55mZu6zBFxZctK6HSXJTUtKkziSC_96UFBFX9y6-czh8hFxzNuecwf16lc4F43oupAUhkxMy4SCBcmnU6Z__nFzEuGUsEdbChNC3UG2qZkMffMRitsK6pIvC77vqC2dp3fbFLG2bLrR1jSFekrPS1xGvjndKPp4e1-kLXb4_v6aLJc2lUB1VCkuwkIECbrTVwyBrmCi8yXQuM2O199YrxFILyZISUFtlcuQmg8wXuZySu7F3H9rPHmPndlXMsa59g20fHbdCK4CEwYDe_kO3bR-aYZ3jBjRIoZNkoNhI5aGNMWDp9qHa-fDtOHMHf27w5w7-3NHfELkZIxUi_uKGMWWByR_Znmls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795932566</pqid></control><display><type>article</type><title>Kriging-Based Self-Adaptive Cloud Controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</creator><creatorcontrib>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</creatorcontrib><description>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2015.2389236</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cloud ; Cloud computing ; Clouds ; Communities ; Computation ; Computational modeling ; Controllers ; Correlation ; Data models ; IaaS ; Kriging ; Kriging models ; Mathematical model ; Mathematical models ; Measurement ; Monitoring ; Predictive models ; Resource scheduling ; Self-adaptive controllers</subject><ispartof>IEEE transactions on services computing, 2016-05, Vol.9 (3), p.368-381</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</citedby><cites>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7004890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gambi, Alessio</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><creatorcontrib>Toffetti, Giovanni</creatorcontrib><title>Kriging-Based Self-Adaptive Cloud Controllers</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</description><subject>cloud</subject><subject>Cloud computing</subject><subject>Clouds</subject><subject>Communities</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Controllers</subject><subject>Correlation</subject><subject>Data models</subject><subject>IaaS</subject><subject>Kriging</subject><subject>Kriging models</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Resource scheduling</subject><subject>Self-adaptive controllers</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuCGzdT55mZu6zBFxZctK6HSXJTUtKkziSC_96UFBFX9y6-czh8hFxzNuecwf16lc4F43oupAUhkxMy4SCBcmnU6Z__nFzEuGUsEdbChNC3UG2qZkMffMRitsK6pIvC77vqC2dp3fbFLG2bLrR1jSFekrPS1xGvjndKPp4e1-kLXb4_v6aLJc2lUB1VCkuwkIECbrTVwyBrmCi8yXQuM2O199YrxFILyZISUFtlcuQmg8wXuZySu7F3H9rPHmPndlXMsa59g20fHbdCK4CEwYDe_kO3bR-aYZ3jBjRIoZNkoNhI5aGNMWDp9qHa-fDtOHMHf27w5w7-3NHfELkZIxUi_uKGMWWByR_Znmls</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gambi, Alessio</creator><creator>Pezze, Mauro</creator><creator>Toffetti, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Kriging-Based Self-Adaptive Cloud Controllers</title><author>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cloud</topic><topic>Cloud computing</topic><topic>Clouds</topic><topic>Communities</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Controllers</topic><topic>Correlation</topic><topic>Data models</topic><topic>IaaS</topic><topic>Kriging</topic><topic>Kriging models</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Resource scheduling</topic><topic>Self-adaptive controllers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gambi, Alessio</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><creatorcontrib>Toffetti, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gambi, Alessio</au><au>Pezze, Mauro</au><au>Toffetti, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kriging-Based Self-Adaptive Cloud Controllers</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>368</spage><epage>381</epage><pages>368-381</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2015.2389236</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2016-05, Vol.9 (3), p.368-381
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_7004890
source IEEE Electronic Library (IEL)
subjects cloud
Cloud computing
Clouds
Communities
Computation
Computational modeling
Controllers
Correlation
Data models
IaaS
Kriging
Kriging models
Mathematical model
Mathematical models
Measurement
Monitoring
Predictive models
Resource scheduling
Self-adaptive controllers
title Kriging-Based Self-Adaptive Cloud Controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kriging-Based%20Self-Adaptive%20Cloud%20Controllers&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Gambi,%20Alessio&rft.date=2016-05-01&rft.volume=9&rft.issue=3&rft.spage=368&rft.epage=381&rft.pages=368-381&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2015.2389236&rft_dat=%3Cproquest_RIE%3E4086964491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795932566&rft_id=info:pmid/&rft_ieee_id=7004890&rfr_iscdi=true