Kriging-Based Self-Adaptive Cloud Controllers
Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2016-05, Vol.9 (3), p.368-381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 3 |
container_start_page | 368 |
container_title | IEEE transactions on services computing |
container_volume | 9 |
creator | Gambi, Alessio Pezze, Mauro Toffetti, Giovanni |
description | Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers. |
doi_str_mv | 10.1109/TSC.2015.2389236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7004890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004890</ieee_id><sourcerecordid>4086964491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFb3gpuCGzdT55mZu6zBFxZctK6HSXJTUtKkziSC_96UFBFX9y6-czh8hFxzNuecwf16lc4F43oupAUhkxMy4SCBcmnU6Z__nFzEuGUsEdbChNC3UG2qZkMffMRitsK6pIvC77vqC2dp3fbFLG2bLrR1jSFekrPS1xGvjndKPp4e1-kLXb4_v6aLJc2lUB1VCkuwkIECbrTVwyBrmCi8yXQuM2O199YrxFILyZISUFtlcuQmg8wXuZySu7F3H9rPHmPndlXMsa59g20fHbdCK4CEwYDe_kO3bR-aYZ3jBjRIoZNkoNhI5aGNMWDp9qHa-fDtOHMHf27w5w7-3NHfELkZIxUi_uKGMWWByR_Znmls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795932566</pqid></control><display><type>article</type><title>Kriging-Based Self-Adaptive Cloud Controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</creator><creatorcontrib>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</creatorcontrib><description>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2015.2389236</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cloud ; Cloud computing ; Clouds ; Communities ; Computation ; Computational modeling ; Controllers ; Correlation ; Data models ; IaaS ; Kriging ; Kriging models ; Mathematical model ; Mathematical models ; Measurement ; Monitoring ; Predictive models ; Resource scheduling ; Self-adaptive controllers</subject><ispartof>IEEE transactions on services computing, 2016-05, Vol.9 (3), p.368-381</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</citedby><cites>FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7004890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gambi, Alessio</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><creatorcontrib>Toffetti, Giovanni</creatorcontrib><title>Kriging-Based Self-Adaptive Cloud Controllers</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</description><subject>cloud</subject><subject>Cloud computing</subject><subject>Clouds</subject><subject>Communities</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Controllers</subject><subject>Correlation</subject><subject>Data models</subject><subject>IaaS</subject><subject>Kriging</subject><subject>Kriging models</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Resource scheduling</subject><subject>Self-adaptive controllers</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AUhQdRsFb3gpuCGzdT55mZu6zBFxZctK6HSXJTUtKkziSC_96UFBFX9y6-czh8hFxzNuecwf16lc4F43oupAUhkxMy4SCBcmnU6Z__nFzEuGUsEdbChNC3UG2qZkMffMRitsK6pIvC77vqC2dp3fbFLG2bLrR1jSFekrPS1xGvjndKPp4e1-kLXb4_v6aLJc2lUB1VCkuwkIECbrTVwyBrmCi8yXQuM2O199YrxFILyZISUFtlcuQmg8wXuZySu7F3H9rPHmPndlXMsa59g20fHbdCK4CEwYDe_kO3bR-aYZ3jBjRIoZNkoNhI5aGNMWDp9qHa-fDtOHMHf27w5w7-3NHfELkZIxUi_uKGMWWByR_Znmls</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gambi, Alessio</creator><creator>Pezze, Mauro</creator><creator>Toffetti, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Kriging-Based Self-Adaptive Cloud Controllers</title><author>Gambi, Alessio ; Pezze, Mauro ; Toffetti, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-44ef989b949175858928702da7b5c3b785aa8a4eef52306f9e5847ce17b9badc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cloud</topic><topic>Cloud computing</topic><topic>Clouds</topic><topic>Communities</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Controllers</topic><topic>Correlation</topic><topic>Data models</topic><topic>IaaS</topic><topic>Kriging</topic><topic>Kriging models</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Resource scheduling</topic><topic>Self-adaptive controllers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gambi, Alessio</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><creatorcontrib>Toffetti, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gambi, Alessio</au><au>Pezze, Mauro</au><au>Toffetti, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kriging-Based Self-Adaptive Cloud Controllers</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>368</spage><epage>381</epage><pages>368-381</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2015.2389236</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2016-05, Vol.9 (3), p.368-381 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_7004890 |
source | IEEE Electronic Library (IEL) |
subjects | cloud Cloud computing Clouds Communities Computation Computational modeling Controllers Correlation Data models IaaS Kriging Kriging models Mathematical model Mathematical models Measurement Monitoring Predictive models Resource scheduling Self-adaptive controllers |
title | Kriging-Based Self-Adaptive Cloud Controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kriging-Based%20Self-Adaptive%20Cloud%20Controllers&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Gambi,%20Alessio&rft.date=2016-05-01&rft.volume=9&rft.issue=3&rft.spage=368&rft.epage=381&rft.pages=368-381&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2015.2389236&rft_dat=%3Cproquest_RIE%3E4086964491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795932566&rft_id=info:pmid/&rft_ieee_id=7004890&rfr_iscdi=true |