Joint 2-D DOA Estimation via Sparse L-shaped Array

In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-03, Vol.63 (5), p.1171-1182
Hauptverfasser: Jian-Feng Gu, Wei-Ping Zhu, Swamy, M. N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 5
container_start_page 1171
container_title IEEE transactions on signal processing
container_volume 63
creator Jian-Feng Gu
Wei-Ping Zhu
Swamy, M. N. S.
description In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.
doi_str_mv 10.1109/TSP.2015.2389762
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7004048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004048</ieee_id><sourcerecordid>10_1109_TSP_2015_2389762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</originalsourceid><addsrcrecordid>eNo9j09LxDAUxIMouK7eBS_5AqkvyUvbHMvu-o_CCtuDt_DapljRbUmKsN_eLrt4mjnMDPNj7F5CIiXYx2r3niiQJlE6t1mqLthCWpQCMEsvZw9GC5NnH9fsJsYvAIlo0wVTb0O_n7gSa77eFnwTp_6Hpn7Y89-e-G6kED0vRfyk0be8CIEOt-yqo-_o7866ZNXTplq9iHL7_LoqStFoZSchm65OfYO6JmgltqatyWpQSE1dA6SYK-uV6kgTYYbet63RnZ3fW_La6CWD02wThhiD79wY5m_h4CS4I7Kbkd0R2Z2R58rDqdJ77__jGQAC5voP5j5RBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><source>IEEE Electronic Library (IEL)</source><creator>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</creator><creatorcontrib>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</creatorcontrib><description>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2389762</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D DOA estimation ; Arrays ; Azimuth ; Cross-covariance matrix ; Direction-of-arrival estimation ; Estimation ; Joints ; Signal processing algorithms ; sparse L-shaped array ; Sparse matrices ; total least square</subject><ispartof>IEEE transactions on signal processing, 2015-03, Vol.63 (5), p.1171-1182</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</citedby><cites>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7004048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</description><subject>2-D DOA estimation</subject><subject>Arrays</subject><subject>Azimuth</subject><subject>Cross-covariance matrix</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Joints</subject><subject>Signal processing algorithms</subject><subject>sparse L-shaped array</subject><subject>Sparse matrices</subject><subject>total least square</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j09LxDAUxIMouK7eBS_5AqkvyUvbHMvu-o_CCtuDt_DapljRbUmKsN_eLrt4mjnMDPNj7F5CIiXYx2r3niiQJlE6t1mqLthCWpQCMEsvZw9GC5NnH9fsJsYvAIlo0wVTb0O_n7gSa77eFnwTp_6Hpn7Y89-e-G6kED0vRfyk0be8CIEOt-yqo-_o7866ZNXTplq9iHL7_LoqStFoZSchm65OfYO6JmgltqatyWpQSE1dA6SYK-uV6kgTYYbet63RnZ3fW_La6CWD02wThhiD79wY5m_h4CS4I7Kbkd0R2Z2R58rDqdJ77__jGQAC5voP5j5RBA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Jian-Feng Gu</creator><creator>Wei-Ping Zhu</creator><creator>Swamy, M. N. S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><author>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2-D DOA estimation</topic><topic>Arrays</topic><topic>Azimuth</topic><topic>Cross-covariance matrix</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Joints</topic><topic>Signal processing algorithms</topic><topic>sparse L-shaped array</topic><topic>Sparse matrices</topic><topic>total least square</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Feng Gu</au><au>Wei-Ping Zhu</au><au>Swamy, M. N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint 2-D DOA Estimation via Sparse L-shaped Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1171</spage><epage>1182</epage><pages>1171-1182</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2015.2389762</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-03, Vol.63 (5), p.1171-1182
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_7004048
source IEEE Electronic Library (IEL)
subjects 2-D DOA estimation
Arrays
Azimuth
Cross-covariance matrix
Direction-of-arrival estimation
Estimation
Joints
Signal processing algorithms
sparse L-shaped array
Sparse matrices
total least square
title Joint 2-D DOA Estimation via Sparse L-shaped Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%202-D%20DOA%20Estimation%20via%20Sparse%20L-shaped%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Jian-Feng%20Gu&rft.date=2015-03-01&rft.volume=63&rft.issue=5&rft.spage=1171&rft.epage=1182&rft.pages=1171-1182&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2389762&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2015_2389762%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7004048&rfr_iscdi=true