Joint 2-D DOA Estimation via Sparse L-shaped Array
In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2015-03, Vol.63 (5), p.1171-1182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1182 |
---|---|
container_issue | 5 |
container_start_page | 1171 |
container_title | IEEE transactions on signal processing |
container_volume | 63 |
creator | Jian-Feng Gu Wei-Ping Zhu Swamy, M. N. S. |
description | In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity. |
doi_str_mv | 10.1109/TSP.2015.2389762 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7004048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004048</ieee_id><sourcerecordid>10_1109_TSP_2015_2389762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</originalsourceid><addsrcrecordid>eNo9j09LxDAUxIMouK7eBS_5AqkvyUvbHMvu-o_CCtuDt_DapljRbUmKsN_eLrt4mjnMDPNj7F5CIiXYx2r3niiQJlE6t1mqLthCWpQCMEsvZw9GC5NnH9fsJsYvAIlo0wVTb0O_n7gSa77eFnwTp_6Hpn7Y89-e-G6kED0vRfyk0be8CIEOt-yqo-_o7866ZNXTplq9iHL7_LoqStFoZSchm65OfYO6JmgltqatyWpQSE1dA6SYK-uV6kgTYYbet63RnZ3fW_La6CWD02wThhiD79wY5m_h4CS4I7Kbkd0R2Z2R58rDqdJ77__jGQAC5voP5j5RBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><source>IEEE Electronic Library (IEL)</source><creator>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</creator><creatorcontrib>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</creatorcontrib><description>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2389762</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D DOA estimation ; Arrays ; Azimuth ; Cross-covariance matrix ; Direction-of-arrival estimation ; Estimation ; Joints ; Signal processing algorithms ; sparse L-shaped array ; Sparse matrices ; total least square</subject><ispartof>IEEE transactions on signal processing, 2015-03, Vol.63 (5), p.1171-1182</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</citedby><cites>FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7004048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</description><subject>2-D DOA estimation</subject><subject>Arrays</subject><subject>Azimuth</subject><subject>Cross-covariance matrix</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Joints</subject><subject>Signal processing algorithms</subject><subject>sparse L-shaped array</subject><subject>Sparse matrices</subject><subject>total least square</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j09LxDAUxIMouK7eBS_5AqkvyUvbHMvu-o_CCtuDt_DapljRbUmKsN_eLrt4mjnMDPNj7F5CIiXYx2r3niiQJlE6t1mqLthCWpQCMEsvZw9GC5NnH9fsJsYvAIlo0wVTb0O_n7gSa77eFnwTp_6Hpn7Y89-e-G6kED0vRfyk0be8CIEOt-yqo-_o7866ZNXTplq9iHL7_LoqStFoZSchm65OfYO6JmgltqatyWpQSE1dA6SYK-uV6kgTYYbet63RnZ3fW_La6CWD02wThhiD79wY5m_h4CS4I7Kbkd0R2Z2R58rDqdJ77__jGQAC5voP5j5RBA</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Jian-Feng Gu</creator><creator>Wei-Ping Zhu</creator><creator>Swamy, M. N. S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>Joint 2-D DOA Estimation via Sparse L-shaped Array</title><author>Jian-Feng Gu ; Wei-Ping Zhu ; Swamy, M. N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-1cfb6ec43ba0d14d5dba93024acbb0064829e22fa3aa474eedd53f93899ae353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2-D DOA estimation</topic><topic>Arrays</topic><topic>Azimuth</topic><topic>Cross-covariance matrix</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Joints</topic><topic>Signal processing algorithms</topic><topic>sparse L-shaped array</topic><topic>Sparse matrices</topic><topic>total least square</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Feng Gu</au><au>Wei-Ping Zhu</au><au>Swamy, M. N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint 2-D DOA Estimation via Sparse L-shaped Array</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1171</spage><epage>1182</epage><pages>1171-1182</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we address the problem of estimating the two-dimensional (2-D) directions of arrival (DOA) of multiple signals, by means of a sparse L-shaped array. The array consists of one uniform linear array (ULA) and one sparse linear array (SLA). The shift-invariance property of the ULA is used to estimate the elevation angles with low computational burden. The signal subspace is constructed by the cross-covariance matrix (CCM) of the received data without implementing eigendecomposition. The source waveforms are then obtained by the estimated elevation angles, which together with each sensor of the SLA, considered as a linear regression model, is used to estimate the azimuth angle by the modified total least squares (MTLS) technique. Our new algorithm yields correct parameter pairs without requiring the computationally expensive pairing operation, and therefore, has at least two advantages over the previous L-shaped array based algorithms: less computational load and better performance due to the use of SLA and CCM. Expressions for the asymptotic mean-squared error (MSE) of the 2-D DOA estimates are derived. Simulation results show that our method provides accurate and consistent 2-D DOA estimation results that could not be obtained by the existing methods with comparable computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2015.2389762</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2015-03, Vol.63 (5), p.1171-1182 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_7004048 |
source | IEEE Electronic Library (IEL) |
subjects | 2-D DOA estimation Arrays Azimuth Cross-covariance matrix Direction-of-arrival estimation Estimation Joints Signal processing algorithms sparse L-shaped array Sparse matrices total least square |
title | Joint 2-D DOA Estimation via Sparse L-shaped Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%202-D%20DOA%20Estimation%20via%20Sparse%20L-shaped%20Array&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Jian-Feng%20Gu&rft.date=2015-03-01&rft.volume=63&rft.issue=5&rft.spage=1171&rft.epage=1182&rft.pages=1171-1182&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2389762&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2015_2389762%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7004048&rfr_iscdi=true |