Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy
High Temperature Superconducting (HTS) tapes based on YBCO are expected to reach a 4-fold critical current density improvement at 30 K and 3 T through developments currently underway at the University of Houston as part of an ARPA-e sponsored project. The major objective of this undertaking is to en...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2015-06, Vol.25 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 25 |
creator | Nyanteh, Y. Schneider, N. Netter, D. Wei, B. Masson, P. J. |
description | High Temperature Superconducting (HTS) tapes based on YBCO are expected to reach a 4-fold critical current density improvement at 30 K and 3 T through developments currently underway at the University of Houston as part of an ARPA-e sponsored project. The major objective of this undertaking is to enable the deployment of cost effective direct drive HTS generators for large off-shore wind turbines. The improved conductor performance allows for a significant reduction of the length of HTS tapes required to generate the excitation field and thus to a reduction of the overall generator cost. This paper presents design and optimization work to find the best generator topology based on the 4X conductor to minimize the levelized cost of energy. The electromagnetic model uses the commercial package FlexPDE as the Finite Element Analysis (FEA) solver. The model takes the power and RPM requirements as inputs, and outputs the Levelized Cost of Energy (LCOE) for the turbine. The model estimates the actual mass and cost of the generator assuming mass production of multiple units per year. The paper presents the model developed in detail as well as the results obtained from the analysis through Monte-Carlo design space exploration. |
doi_str_mv | 10.1109/TASC.2015.2389716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7004044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7004044</ieee_id><sourcerecordid>3611692801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6ff986bf0af0aa27f07996a2a7aec336834357211beebfca9be3a6f73ffb83da3</originalsourceid><addsrcrecordid>eNpdkU1r5DAMhkPpQr_2Byx7MeylPWRq2fFHjsP0YwpTeugsPRonlXddknhqZwbaX1-HKT0UJCTEoxeJtyh-AZ0B0PpyPX9czBgFMWNc1wrkQXEMQuiSCRCHuacCSs0YPypOUnqhFCpdiePi6WEz-t6_29GHgQRHLAFK7p_IlY_YjuQq-h2S5fqR3OKA0Y4hEpfz3g--3_ZkhTvs_Ds-k0VI4yRwnbF_b2fFD2e7hD8_62nx9-Z6vViWq4fbu8V8VbZc0rGUztVaNo7aHJYpR1VdS8ussthyLjWvuFAMoEFsXGvrBrmVTnHnGs2fLT8tLva6_21nNtH3Nr6ZYL1ZzldmmlHgmmvKdpDZ8z27ieF1i2k0vU8tdp0dMGyTAaUlCOBSZfTPN_QlbOOQPzEgJQWoK80zBXuqjSGliO7rAqBmssVMtpjJFvNpS975vd_xiPjFK0orWlX8A_eHhoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660119483</pqid></control><display><type>article</type><title>Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy</title><source>IEEE Xplore</source><creator>Nyanteh, Y. ; Schneider, N. ; Netter, D. ; Wei, B. ; Masson, P. J.</creator><creatorcontrib>Nyanteh, Y. ; Schneider, N. ; Netter, D. ; Wei, B. ; Masson, P. J.</creatorcontrib><description>High Temperature Superconducting (HTS) tapes based on YBCO are expected to reach a 4-fold critical current density improvement at 30 K and 3 T through developments currently underway at the University of Houston as part of an ARPA-e sponsored project. The major objective of this undertaking is to enable the deployment of cost effective direct drive HTS generators for large off-shore wind turbines. The improved conductor performance allows for a significant reduction of the length of HTS tapes required to generate the excitation field and thus to a reduction of the overall generator cost. This paper presents design and optimization work to find the best generator topology based on the 4X conductor to minimize the levelized cost of energy. The electromagnetic model uses the commercial package FlexPDE as the Finite Element Analysis (FEA) solver. The model takes the power and RPM requirements as inputs, and outputs the Levelized Cost of Energy (LCOE) for the turbine. The model estimates the actual mass and cost of the generator assuming mass production of multiple units per year. The paper presents the model developed in detail as well as the results obtained from the analysis through Monte-Carlo design space exploration.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2015.2389716</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Condensed Matter ; Conductors ; Conductors (devices) ; COPPER OXIDE ; Cost engineering ; COSTS ; CURRENT DENSITY ; Design engineering ; Electric power ; ENERGY COSTS ; Engineering Sciences ; Finite Element Analysis ; GENERATORS ; High Temperature Superconductivity ; High-temperature superconductors ; Levelized Cost of Electricity ; MATHEMATICAL ANALYSIS ; Mathematical models ; Physics ; Reduction ; Rotors ; Stator windings ; Superconducting tapes ; SUPERCONDUCTIVITY ; TAPE ; Torque ; Wind turbine generators ; YTTRIUM OXIDE</subject><ispartof>IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6ff986bf0af0aa27f07996a2a7aec336834357211beebfca9be3a6f73ffb83da3</citedby><cites>FETCH-LOGICAL-c360t-6ff986bf0af0aa27f07996a2a7aec336834357211beebfca9be3a6f73ffb83da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7004044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7004044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01383802$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nyanteh, Y.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Netter, D.</creatorcontrib><creatorcontrib>Wei, B.</creatorcontrib><creatorcontrib>Masson, P. J.</creatorcontrib><title>Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>High Temperature Superconducting (HTS) tapes based on YBCO are expected to reach a 4-fold critical current density improvement at 30 K and 3 T through developments currently underway at the University of Houston as part of an ARPA-e sponsored project. The major objective of this undertaking is to enable the deployment of cost effective direct drive HTS generators for large off-shore wind turbines. The improved conductor performance allows for a significant reduction of the length of HTS tapes required to generate the excitation field and thus to a reduction of the overall generator cost. This paper presents design and optimization work to find the best generator topology based on the 4X conductor to minimize the levelized cost of energy. The electromagnetic model uses the commercial package FlexPDE as the Finite Element Analysis (FEA) solver. The model takes the power and RPM requirements as inputs, and outputs the Levelized Cost of Energy (LCOE) for the turbine. The model estimates the actual mass and cost of the generator assuming mass production of multiple units per year. The paper presents the model developed in detail as well as the results obtained from the analysis through Monte-Carlo design space exploration.</description><subject>Condensed Matter</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>COPPER OXIDE</subject><subject>Cost engineering</subject><subject>COSTS</subject><subject>CURRENT DENSITY</subject><subject>Design engineering</subject><subject>Electric power</subject><subject>ENERGY COSTS</subject><subject>Engineering Sciences</subject><subject>Finite Element Analysis</subject><subject>GENERATORS</subject><subject>High Temperature Superconductivity</subject><subject>High-temperature superconductors</subject><subject>Levelized Cost of Electricity</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Reduction</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Superconducting tapes</subject><subject>SUPERCONDUCTIVITY</subject><subject>TAPE</subject><subject>Torque</subject><subject>Wind turbine generators</subject><subject>YTTRIUM OXIDE</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1r5DAMhkPpQr_2Byx7MeylPWRq2fFHjsP0YwpTeugsPRonlXddknhqZwbaX1-HKT0UJCTEoxeJtyh-AZ0B0PpyPX9czBgFMWNc1wrkQXEMQuiSCRCHuacCSs0YPypOUnqhFCpdiePi6WEz-t6_29GHgQRHLAFK7p_IlY_YjuQq-h2S5fqR3OKA0Y4hEpfz3g--3_ZkhTvs_Ds-k0VI4yRwnbF_b2fFD2e7hD8_62nx9-Z6vViWq4fbu8V8VbZc0rGUztVaNo7aHJYpR1VdS8ussthyLjWvuFAMoEFsXGvrBrmVTnHnGs2fLT8tLva6_21nNtH3Nr6ZYL1ZzldmmlHgmmvKdpDZ8z27ieF1i2k0vU8tdp0dMGyTAaUlCOBSZfTPN_QlbOOQPzEgJQWoK80zBXuqjSGliO7rAqBmssVMtpjJFvNpS975vd_xiPjFK0orWlX8A_eHhoE</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Nyanteh, Y.</creator><creator>Schneider, N.</creator><creator>Netter, D.</creator><creator>Wei, B.</creator><creator>Masson, P. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20150601</creationdate><title>Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy</title><author>Nyanteh, Y. ; Schneider, N. ; Netter, D. ; Wei, B. ; Masson, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6ff986bf0af0aa27f07996a2a7aec336834357211beebfca9be3a6f73ffb83da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed Matter</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>COPPER OXIDE</topic><topic>Cost engineering</topic><topic>COSTS</topic><topic>CURRENT DENSITY</topic><topic>Design engineering</topic><topic>Electric power</topic><topic>ENERGY COSTS</topic><topic>Engineering Sciences</topic><topic>Finite Element Analysis</topic><topic>GENERATORS</topic><topic>High Temperature Superconductivity</topic><topic>High-temperature superconductors</topic><topic>Levelized Cost of Electricity</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Reduction</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Superconducting tapes</topic><topic>SUPERCONDUCTIVITY</topic><topic>TAPE</topic><topic>Torque</topic><topic>Wind turbine generators</topic><topic>YTTRIUM OXIDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyanteh, Y.</creatorcontrib><creatorcontrib>Schneider, N.</creatorcontrib><creatorcontrib>Netter, D.</creatorcontrib><creatorcontrib>Wei, B.</creatorcontrib><creatorcontrib>Masson, P. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nyanteh, Y.</au><au>Schneider, N.</au><au>Netter, D.</au><au>Wei, B.</au><au>Masson, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>High Temperature Superconducting (HTS) tapes based on YBCO are expected to reach a 4-fold critical current density improvement at 30 K and 3 T through developments currently underway at the University of Houston as part of an ARPA-e sponsored project. The major objective of this undertaking is to enable the deployment of cost effective direct drive HTS generators for large off-shore wind turbines. The improved conductor performance allows for a significant reduction of the length of HTS tapes required to generate the excitation field and thus to a reduction of the overall generator cost. This paper presents design and optimization work to find the best generator topology based on the 4X conductor to minimize the levelized cost of energy. The electromagnetic model uses the commercial package FlexPDE as the Finite Element Analysis (FEA) solver. The model takes the power and RPM requirements as inputs, and outputs the Levelized Cost of Energy (LCOE) for the turbine. The model estimates the actual mass and cost of the generator assuming mass production of multiple units per year. The paper presents the model developed in detail as well as the results obtained from the analysis through Monte-Carlo design space exploration.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2015.2389716</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_7004044 |
source | IEEE Xplore |
subjects | Condensed Matter Conductors Conductors (devices) COPPER OXIDE Cost engineering COSTS CURRENT DENSITY Design engineering Electric power ENERGY COSTS Engineering Sciences Finite Element Analysis GENERATORS High Temperature Superconductivity High-temperature superconductors Levelized Cost of Electricity MATHEMATICAL ANALYSIS Mathematical models Physics Reduction Rotors Stator windings Superconducting tapes SUPERCONDUCTIVITY TAPE Torque Wind turbine generators YTTRIUM OXIDE |
title | Optimization of a 10 MW Direct Drive HTS Generator for Minimum Levelized Cost of Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%2010%20MW%20Direct%20Drive%20HTS%20Generator%20for%20Minimum%20Levelized%20Cost%20of%20Energy&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Nyanteh,%20Y.&rft.date=2015-06-01&rft.volume=25&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2015.2389716&rft_dat=%3Cproquest_RIE%3E3611692801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660119483&rft_id=info:pmid/&rft_ieee_id=7004044&rfr_iscdi=true |